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Abstract 
Planning for resilience is now a catch cry of many marine conservation 

programs and initiatives. These efforts are striving to inform conservation 

strategies for marine regions to ensure they have inbuilt capacity to retain 

biological diversity and ecological function in the face of global environmental 

change – particularly changes in climate and resource exploitation. A 

fundamental step in these strategies is to understand the distribution of species’ 

(or other biological entities) throughout the focal region. However, in the 

absence of direct biological and ecological information for many marine 

species, scientists are increasingly using spatially-explicit predictive modelling 

approaches. Through the improved access to multibeam echosounder (MBES) 

data and underwater video technology these models can provide spatial 

predictions of the most suitable regions for an organism at resolutions 

previously not possible. This thesis was motivated by the recognition of the 

potential role of species distribution models in managing marine fish species 

and their habitats. This thesis sets out to address four interlinked ideas in 

consecutive chapters, with their justification and outcomes briefly detailed 

below. 

Because of the issues surrounding the detection of species using remotely-

sensed video techniques in the marine environment, the application of 

presence-only techniques are well suited for modelling that habitat suitability 

of demersal fishes. The geometric mean algorithm within Ecological-Niche 

Factor Analysis (ENFA) was used to compare models based on seafloor 

variables derived from 2.5 × 2.5 m cell resolution MBES at three spatial scales; 
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fine (56.25 m2), medium (506.25 m2) and coarse (2756.25 m2), to determine 

which spatial scale was most influential in predicting Notolabrus tetricus (blue-

throat wrasse) habitat suitability. This study was undertaken in a 42 km2 region 

that was situated on the western side of Cape Duquesne in Discovery Bay, 

south-eastern Australia. Of this area 26.3 km2 is contained within the 

Discovery Bay Marine National Park (MNP). The coarse scale model was 

found to have the best predictive capabilities with a Boyce Index of 0.80 ± 

0.26. The global marginality and specialisation values indicated that, 

irrespective of the three spatial scales analysed, N. tetricus were associated 

with seafloor characteristics that are different to the mean available within the 

study site, but exhibit a relatively wide niche. Although variable importance 

varied over the three spatial scale models, N. tetricus showed a strong 

association for regions of shallow water, close to reef, with high rugosity and 

maximum curvature and low HSI-b (backscatter derivative) values. Generally 

the spatial patterns in habitat suitability were well represented in Discovery 

Bay MNP compared to the adjacent unprotected region. However, some 

significant differences in spatial patterns were observed when patch metrics 

were compared. Unsuitable and highly suitable habitat patches were distributed 

disproportionally within the MNP (i.e. significantly smaller Interspersion and 

Juxtaposition Index inside the MNP). Furthermore, unsuitable habitat in the 

MNP was more regular (i.e. Mean Shape Index of significantly larger). 

With the growing number of modelling approaches available, knowledge of the 

relative performance of different presence-only models in the marine 

environment is required. Using towed-video-derived observation datasets and 

MBES-derived seafloor habitat information for the Discovery Bay study site, 
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habitat suitability of five demersal fish taxa were modelled using 10 presence-

only algorithms: BIOCLIM, DOMAIN, ENFA (distance geometric mean 

[GM], distance harmonic mean [HM], median [M], area-adjusted median [Ma], 

median + extremum [Me], area-adjusted median + extremum [Mae] and 

minimum distance [Min]) and MAXENT. Model performance was assessed 

using kappa and Area Under Curve (AUC) of the Receiver Operator 

Characteristic (ROC). The influence of spatial range (area of occupancy) and 

environmental niches (marginality and tolerance) on modelling performance 

were also tested. The MAXENT generally performed best, followed by ENFA 

GM, ENFA HM, DOMAIN, BIOCLIM, ENFA M, ENFA Min, ENFA Ma, 

ENFA Mae and ENFA Me algorithms. Fish with clearly definable niches (i.e. 

high marginality) were most accurately modelled. Generally, Euclidean 

distance to nearest reef, HSI-b (backscatter derivative), rugosity and maximum 

curvature were the most important variables in determining suitable habitat for 

the five demersal fish taxa investigated. This comparative study encourages 

ongoing use of presence-only approaches, particularly MAXENT, in modelling 

suitable habitat for demersal marine fishes. 

Accurate estimates of species occurrence are important to any fish biodiversity 

assessments and distribution models. With increasing emphasis on non-

destructive sampling of fishes, underwater video techniques are commonly 

used without a thorough understanding of their advantages and disadvantages. 

This study was undertaken in a 25.7 km2 study region off the coast of 

Warrnambool, south-eastern Australia. Using baited and towed video systems 

measures of fish assemblages, functional groups (i.e. pelagic carnivore, 

epibenthic carnivore/omnivore or herbivore) and observability (i.e. 
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conspicuous or cryptic) were compared across six biological habitats (mixed 

brown algae, mixed red and brown algae, mixed red algae, mixed red algae 

with invertebrates, no-visible macro-biota and seagrass) by means of 

permutation analysis of variance. To visualise the differences between the two 

video methods across the six habitats a distance-based Principle Coordinates 

Analysis was used with the strongest correlated Spearman vectors (i.e. > 0.7) 

overlaid. It was found that baited and towed video techniques recorded very 

different assemblages, functional groups and observability categories across 

structurally complex benthic biological habitats (i.e. algal-dominated habitats). 

However, as the habitat complexity decreased (e.g. seagrass and areas with no 

visible macro-biota), both techniques appeared to provide similar fish 

assemblage information. Results suggests that if a single fish surveying 

technique is to be used, then the baited-video technique recorded far greater 

number of species (particularly pelagic and epibenthic carnivores/omnivores) 

across a broader range of habitats in the study site. However, when combined, 

the two techniques provided complimentary assemblage information by 

recording different assemblages compared to each technique used in isolation.  

The availability of fine-scale, complete-coverage seafloor variables and video-

based occurrence datasets has seen a rapid increase in the use of species 

distribution models (SDMs) to predict the distributions of marine biological 

entities (e.g. species, assemblages or habitats) over a variety of spatial scales. 

However, sensible-looking, well-performing models can provide very different 

predictions of distribution depending on the survey technique used to obtain 

occurrence datasets. To examine this, SDMs for nine temperate marine fishes 

were constructed for the Warrnambool study site. Generalised linear model 
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(GLM), generalised additive model (GAM) and maximum entropy 

(MAXENT) were used to build models based on co-located occurrence 

datasets derived from two underwater video methods (i.e. baited and towed 

video) and fine-scale (i.e. 5 × 5 m cell resolution) MBES-based, seafloor-

habitat variables. Overall, this study found that the choice of modelling 

approach did not considerably influence the prediction of distributions based 

on the same occurrence dataset. However, greater dissimilarity between model 

predictions was observed across the nine fish taxa when the two occurrence 

datasets where compared (relative to models based on each dataset). However, 

based on the results in this study it was difficult to draw any general trends in 

regards to which circumstances what method provides more reliable 

occurrence datasets. Nonetheless, it is suggested that predictions do not 

necessarily reflect the species actual distribution but rather the apparent 

distribution (i.e. a combination of species distribution and the probability of 

detecting it). This study demonstrated the potential variation in model 

predictions caused by biases associated with the two video observation 

methods. Further it also suggests that model predictions need to be carefully 

interpreted; especially if used for management decisions. 
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1.1 General introduction 

Coastal zones constitute only 10% of the marine environment, yet support 

approximately 90% of all known marine species (Gray 1997). These resource-

rich areas are subjected to many adverse anthropogenic activities, including; 

overexploitation of fisheries, pollution and impacts associated with 

encroaching coastal urbanisation (Jackson et al. 2001). Consequently, we have 

seen a rapid decrease in marine biodiversity due to habitat degradation in 

coastal zones (Sala & Knowlton 2006, Worm et al. 2006). In response, multiple 

initiatives have been instigated to improve our understanding of coastal marine 

biodiversity in an effort to identify, prioritise and ultimately preserve areas of 

importance (e.g. Ward et al. 1999, Campbell & Hewitt 2006, Harris & 

Whiteway 2009, Last et al. 2010). In the absence of detailed biological and 

ecological information for many marine organisms, research has focused on 

predicting the distribution of species or assemblages through the quantification, 

and subsequent prediction, of species-environment relationships (for a review 

see Brown et al. 2011). These species-environment relationships are predicated 

on the assumption that environmental measures reflect ecologically or 

functionally important factors that, either directly or indirectly, influence 

species distributions. 

There has been substantial research demonstrating the importance of 

environmental factors in the structuring of marine biological assemblages. For 

example, numerous researchers have noted the importance of seafloor structure 

on the distribution and associated measures of habitat suitability for marine 

demersal fishes (Choat & Ayling 1987, Friedlander & Parrish 1998, Yoklavich 
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et al. 2000, Willis & Anderson 2003, Cappo et al. 2007, Pittman et al. 2009, 

Chatfield et al. 2010, Greene et al. 2011). However, these species-environment 

relationships have typically been limited by the type, coverage and spatial 

resolution of the data; often relying upon sparsely, co-located occurrences and 

point descriptors of arbitrarily chosen groupings of continuous physical and 

biological factors into, for example, ‘depth categories’ or ‘habitat type’ (Butler 

et al. 1991, Friedlander & Parrish 1998, Babcock et al. 1999, Westera et al. 

2003). However, this approach is limited as it does not allow the subtle, but 

important, variation of continuous environmental variables (e.g. depth) on 

species to be determined. This is because observational and fine-scale 

continuous environmental data are rarely available for the marine environment.  

Over the past decade there has been a rapid increase and application of 

technology that, when coupled with advances in geographic information 

systems (GIS) and computational power, make it possible to survey large 

regions of seafloor with unprecedented detail and accuracy (Hughes Clarke et 

al. 1996, Nasby-Lucas et al. 2002, Iampietro et al. 2005, Wilson et al. 2007, 

Ierodiaconou et al. 2011). One such method is the multibeam echosounder 

(MBES). These MBES datasets are ideal for the application of terrain analysis 

techniques (historically developed for analogous terrestrial datasets; e.g. 

topography) that form environmental variable datasets for input into spatially-

explicit species-environment models (Wilson et al. 2007). In addition, 

advances in underwater video systems offer the ability to cost-effectively 

capture occurrence data beyond the range of traditional methods (e.g. SCUBA; 

Harvey et al. 2002) and are viable methods for estimating fish population 

dynamics (for detailed reviews see: Shortis et al. 2009, Murphy & Jenkins 
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2010). The integration of high-resolution MBES data and occurrence records 

from underwater video provides an opportunity to develop spatially-explicit 

models of habitat suitability for temperate marine fishes over large areas of 

seafloor. However, these underwater video systems are increasingly being used 

to record occurrence data for spatially-explicit models of habitat suitability 

without a thorough understanding of their advantages and disadvantages. 

Understanding the relative detectability of fish species from video survey 

methods may help to improve the accuracy of models and warrants further 

investigation.  

Another important consideration that should be addressed by any attempt at 

quantifying and predicting the habitat suitability of marine species is that of 

spatial scale (Wilson et al. 2007). With seafloor variables, and indeed species 

distributions, spanning a continuum of scales it is not an easy challenge to 

meet. Scale is especially important in relation to terrain analysis, since both the 

initial dataset resolution and the analysis scale can potentially influence the 

results. For models of species distribution it is important to try and match the 

data and analysis scales to those relevant to the focal taxa themselves. Previous 

investigations of habitat suitability of squat lobster suggested that several 

spatial scales rather than any one scale were relevant (Wilson et al. 2007). By 

contrast, investigations have also revealed that cold water corals exhibit 

tendencies to associate with coarse scale features of the terrain such as 

carbonate mounds (De Mol et al. 2002). The influence of spatial scale of 

spatially-continuous seafloor variables on fish has received less attention. One 

study that has investigated the influence of spatial scale of spatially-continuous 

seafloor variables on demersal fishes concluded that broad-scale variables (i.e. 
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variables with a 2 × 2 m cell resolution calculated with a kernel radius of 25 m) 

provided better models (relative to fine-scale models based on a kernel radius 

of 12.5 m) for seven of the eight models developed (Moore et al. 2009). In 

addition, based on studies that have used spatially sparse datasets (e.g. diver 

transects), it is likely that the most relevant spatial scales will vary depending 

on the focal species, mobility (e.g. sedentary υ mobile) and ontogenetic habitat 

preferences. For instance, from these spatially sparse studies fine spatial scales 

(i.e. metres) influence some fish species (e.g. Dascyllus aruanus; Holbrook et 

al. 2000), while other species exhibit tendencies towards variables over coarse 

spatial scales (i.e. hundreds of metres; e.g. Scarus iserti; Tolimieri 1998). 

Indeed both fine and coarse-scale features may be important contributors to the 

distribution of some fish species (García-Charton et al. 2004). However, 

further research is needed to improve our understanding of the influence of 

spatial scale on habitat suitability models for demersal fishes.  

The quest to better characterise a species’ response to its environment has seen 

the proliferation of modelling approaches (Guisan & Zimmermann 2000). 

Broadly, models can be classified into one of two categories; those that require 

presence/absence data and those that require presence-only. While 

presence/absence models (e.g. generalised linear models; GLM, generalised 

additive models; GAM) remain among the most commonly used methods (for 

detailed reviews see; Franklin 1995, Guisan & Zimmermann 2000), presence-

only approaches have gained popularity in the marine environment (Bryan & 

Metaxas 2007, Dolan et al. 2008, MacLeod et al. 2008, Skov et al. 2008, 

Tittensor et al. 2009, Ready et al. 2010). These presence-only techniques were 

originally created to predict the distributions of organisms that are especially 
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susceptible to unreliable absences due to an animal’s ability to disperse or hide 

during field surveys (Hirzel et al. 2002). Unreliable absences in the marine 

environment are common (Bryan & Metaxas 2007, Wilson et al. 2007, Davies 

et al. 2008). A common cause of uncertainty in absences is attributed to issues 

in accurately surveying fishes (Mueller et al. 2006). Consider a towed-video 

survey of a demersal fish species that inhabits a macroalgal dominated reef 

system (e.g. labrids), inferring an absence because the species is not observed 

could be very misleading. This is because a ‘0’ observation could represent 

either an actual absence of the fish, or alternatively may represent a fish hiding 

within the numerous crevices and macroalgal canopy, but is missed by the 

limited field of view of the towed-video system employed (i.e. a non-detection 

of a species that was present). By applying presence-only models to such data 

it is possible to avoid the inclusion of potentially inaccurate absence data. 

However, since no single method is universally better than the next, 

researchers are faced with the difficulty of selecting between numerous 

modelling approaches. There has been a considerable amount of research 

devoted to comparing the relative performance of modelling approaches. 

However, since these models are developed for terrestrial datasets, the majority 

of these studies have focused on terrestrial, freshwater or simulated datasets 

(Olden & Jackson 2002, Segurado & Araújo 2004, Elith et al. 2006, Meynard 

& Quinn 2007, Tsoar et al. 2007). The effective application of modelling 

methods in the marine environment, however, has received less attention, 

specifically in relation to demersal fish species. How the results from 

terrestrial, freshwater and simulated datasets translate into the marine 

environment remains largely untested. 



7 | P a g e  
 

1.2 Thesis focus, objectives and arrangement  

Management agencies are increasingly seeking the provision of accurate, 

quantitative and spatially-explicit information on patterns of species 

distributions at scales relevant to the management process (Vanderklift & Ward 

2000, Harris & Whiteway 2009, Malcolm et al. 2010a). This is because 

quantitative and spatially-explicit information is an important initial step in the 

process of defining the boundaries of proposed marine protected areas (MPAs; 

Ward et al. 1999, Roberts et al. 2002). This allows areas that are 

‘representative’ and ‘distinct’ to be given the highest priority for protection 

(Myers et al. 2000). Increasingly, to support such initiatives, spatially-explicit 

predictive models are being used to provide this information (Pittman et al. 

2007a). For example, Cañadas et al. (2005) used spatially-explicit predictive 

models to identified regions that were important for a number of cetacean 

species to define the boundaries of three proposed MPAs. Inevitably, however, 

a model is only as good as its underlying datasets (Stockwell & Peterson 2002, 

Zaniewski et al. 2002). For example, Lozier et al. (2009) highlighted the 

potential issue of incorrect (or incomplete) occurrence data as a source of error 

that may affect the accuracy of models in predicting sasquatch distributions. 

Whilst Lozier et al. (2009) used publicly available data (i.e. online repository 

of sighting localities) to demonstrate that the concept of incomplete or 

erroneous (i.e. misidentified) occurrence datasets influence models, it is 

equally applicable for well-designed field surveys in the marine environment. 

Consequently, understanding the underlying datasets, both the occurrence and 

the environmental data, as well as their influence on resultant model 

predictions is important. This thesis used two underwater video methods (i.e. 
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towed and baited) and high-resolution, spatially-continuous multibeam sonar 

datasets to examine and interpret the influence of seafloor habitat 

characteristics on the spatial distribution of temperate marine fishes. To 

achieve this goal, four separate, but interlinked studies were undertaken. These 

studies are presented as a series of papers, either published or in review, which 

form the four research chapters contained within this thesis and the aims of 

which are detailed below: 

Defining and predicting demersal fish distributions and associated measures of 

habitat suitability are fundamental elements of any planning or management 

program for coastal subtidal marine environments. Chapter 2 (‘Remotely-

sensed hydroacoustics and observation data for predicting fish habitat 

suitability’) reports the investigation of the potential of towed-video-derived 

observation and full-coverage MBES datasets to quantify habitat suitability for 

a marine demersal fish, the blue-throat wrasse (Notolabrus tetricus). As a 

consequence of incomplete detection of mobile demersal fish species using 

remotely-sensed video techniques, a presence-only approach, Ecological-Niche 

Factor Analysis (ENFA), was used. The ENFA was conducted using seafloor 

variables derived from multibeam sonar datasets at three spatial scales; fine 

(56.25 m2), medium (506.25 m2) and coarse (2756.25 m2), to determine the 

influence of spatial scale on the prediction of blue-throat wrasse habitat 

suitability. The best performing model was also used to compare the spatial 

patterns in habitat suitability in and around Discovery Bay Marine National 

Park. 
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Following the demonstrated application of presence-only methods in Chapter 

2, and given the growing number of modelling approaches available, closing 

the knowledge gap of the relative performance of different models in the 

marine environment was considered important. In this context, in Chapter 3 

(‘Comparing presence-only algorithms for predicting habitat suitability for 

marine demersal fishes’) MBES and towed-video-derived occurrence datasets 

are again used to model the habitat suitability of five demersal fish taxa in 

Discovery Bay, south-eastern Australia. In particular ten presence-only 

algorithms are contrasted (BIOCLIM, DOMAIN, ENFA; distance geometric 

mean [GM], distance harmonic mean [HM], median [M], area-adjusted median 

[Ma], median + extremum [Me], area-adjusted median + extremum [Mae] and 

minimum distance [Min], and MAXENT) using kappa and Area Under Curve 

(AUC) of the Receiver Operator Characteristic (ROC). The influences of 

spatial range (area of occupancy) and environmental niches (marginality and 

tolerance) on modelling performance were also tested. The best performing 

model for each taxon was also used to determine the most important variables 

in predicting suitable habitat for the five demersal fish taxa investigated.  

Accurate estimates of fish occurrences are important to any species’ 

assessment and distribution model. With increasing emphasis on non-

destructive sampling of fishes, underwater video techniques are commonly 

used without a thorough understanding of their influence on the datasets they 

produce. Chapter 4 (‘Comparing towed and baited underwater video 

techniques for assessing temperate marine fishes’) contrasted baited and towed 

video systems to assess fish assemblages, functional groups (i.e. pelagic 

carnivore, epibenthic carnivore/omnivore or herbivore) and observability (i.e. 
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conspicuous or cryptic) across six biological habitats (mixed brown algae, 

mixed red and brown algae, mixed red algae, mixed red algae with 

invertebrates, no-visible macro-biota and seagrass). 

The availability of fine-scale, complete-coverage seafloor variables and video-

based occurrence datasets has seen a rapid increase in the use of species 

distribution models (SDMs) to predict the distributions of marine biological 

entities (i.e. species, assemblages or habitats) over a variety of spatial scales. 

However, sensible-looking, well-performing models can provide very different 

predictions of distribution depending on which occurrence dataset is used. To 

bring into focus this potential problem, Chapter 5 (‘Are we predicting the 

actual or apparent distribution of temperate marine fishes?’) compared 

predictions of habitat suitability from two presence/absence (generalised linear 

model and generalised additive model) and one presence-only (MAXENT) 

techniques. To illustrate the influence of occurrence dataset, models were built 

using co-located occurrence datasets derived from two underwater video 

methods (i.e. baited and towed video) and fine-scale multibeam sonar based 

seafloor habitat variables. 

The thesis ends with a summary of key findings (Chapter 6) to link the major 

outcomes of the research to the objectives defined above in this section 

(Section 1.2 of Chapter 1) to illustrate the contribution this thesis has made to 

the field of marine quantitative spatial ecology. This final chapter (Chapter 6) 

also makes recommendations for future work in this research area. 

All of the research chapters represent independent bodies of work that have 

been published or are under review in peer-reviewed journals. Chapter 2 has 
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been presented (oral) at the Australian Marine Sciences Association conference 

held in the Adelaide, Australia (July 2009), and published in Continental Shelf 

Research in 2011 (Monk et al. 2011). Chapter 3 was presented (oral) at the 

GeoHab Conference held in Wellington, New Zealand (May 2010) and 

published in Marine Ecology-Progress Series in 2010 (Monk et al. 2010). 

Chapters 4 and 5 have been presented at GeoHab Conference held in Helsinki, 

Finland (poster; May 2011) and at the Australian Marine Sciences Association 

conference held in the Fremantle, Australia (oral; July 2011), and are in review 

with Estuarine, Coastal and Shelf Science (July 2011) and PloS ONE (July 

2011), respectively. 
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Chapter 2  
 
 

Remotely-sensed 
hydroacoustics and 
observation data for 
predicting fish habitat 
suitability1 

 

                                                 
1 The research in this chapter has been published as Monk J, Ierodiaconou D, Bellgrove A, 
Harvey E, Laurenson L (2011) Remotely sensed hydroacoustics and observation data for 
predicting fish habitat suitability. Continental Shelf Research 31: S17-S27 
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2.1 Introduction 

Predictive geographical modelling is increasingly being recognised as an 

important tool for estimating species’ habitat suitability, which is a 

fundamental step in the planning of conservation and management programs 

(Franklin 1995, Pearce & Ferrier 2001). These techniques allow the prediction 

of a species’ potential habitat suitability, or distribution, beyond the range of 

direct observation data alone. Furthermore predictive geographic modelling 

serves a variety of purposes in applied ecology, including identifying areas of 

high conservation potential, assessment of suitable habitat representativeness 

and spatial patterns within protected areas, identifying the best sites for species 

reintroductions, designing wildlife corridors, predicting sites at risk for disease 

or exotic species invasions, and predicting how species distributions may 

change in response to management decisions and climate change (Manel et al. 

2001). Although originating and being applied more commonly in terrestrial 

environments, advances in marine remote sensing technologies and the 

analytical capabilities of geographic information system (GIS) has seen an 

increase in marine applications of habitat suitability modelling (Brown et al. 

2005, Iampietro et al. 2005, Bryan & Metaxas 2007, Pittman et al. 2007b, 

Wilson et al. 2007, Galparsoro et al. 2009). Through the utilisation of terrain 

analysis techniques of high-resolution MBES it is now possible to extract a 

suite of variable datasets that are ideal for input into predictive models (Wilson 

et al. 2007).  

Advances in remotely operated underwater video systems offer the ability to 

cost-effectively capture observation data beyond the range of traditional 
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methods (e.g. SCUBA; Assis et al. 2007) and is a viable method in estimating 

fish population dynamics (Lauth et al. 2004, Watanabe et al. 2004, Morrison & 

Carbines 2006). Towed-video techniques have produced similar results to diver 

transects for estimating fish population dynamics, without being restricted by 

depth or bottom time (Stobart et al. 2007). This technique also has advantages 

over capture methods and baited-video systems as it is able to continuously 

capture data over seafloor transitional zones (Spencer et al. 2005). Morrison 

and Carbines (2006), for example, compared a large range of commonly used 

fish survey techniques (i.e. trawls, traps, nets, jigs, long-lining, baited camera 

and SCUBA diver) to a towed/drift video system to estimate the abundance of 

Pagrus auratus (snapper) during their night-time resting period. They found 

that the towed-video system appeared to provide better estimates of population 

abundance because it was not limited by depth, deployment time or size class 

selectivity. The integration of high-resolution MBES data and presence records 

from towed-video datasets provides an opportunity to develop models of fish 

habitat suitability over large areas of seafloor.  

Different mathematical techniques have been developed for habitat suitability 

models (Guisan & Zimmermann 2000); those that require presence/absence 

data (e.g. generalised linear modelling) and more recently those that involve 

presence-only data (e.g. ENFA; Hirzel et al. 2002). Although towed-video is 

well suited to estimating fish occurrences, obtaining reliable absence data for 

highly mobile demersal fishes that are closely associated with seafloor 

structures (e.g. kelp beds or overhanging cliff structures) from a remotely-

sensed video image can potentially result in an underestimate of a species 

occurrence. While the application of presence-only approaches negates the 
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need for reliable absence data, another advantage of these models pertains to 

species that are not in equilibrium with their environment (e.g. invasive or 

commercially-exploited species). In this context, an absence of a species may 

indicate an area has been full-exploited (e.g. fished out), rather than unsuitable 

habitat. In such circumstances, the inclusion of absence data in SDM could bias 

predictions of suitable habitat (Cianfrani et al. 2010). Thus, the application of 

the latter of these two techniques will be the focus of this study.  

Spatially-explicit presence-only models utilise some form of environmental 

envelope or distance approach that compares the environmental niche of a 

species (defined from occurrence datasets) to the ecological characteristics of 

the entire study area (stored as GIS layers; Hirzel et al. 2002). While presence-

only modelling is commonly used in terrestrial ecology (Hirzel et al. 2001, 

Brotons et al. 2004, Elith et al. 2006, Phillips et al. 2006, Titeux 2006, Tsoar et 

al. 2007), recent marine applications have yielded promising results, 

particularly using ENFA. The ENFA has been applied for modelling coral 

distribution at local (Dolan et al. 2008), regional (Bryan & Metaxas 2007) and 

global (Tittensor et al. 2009) scales. It has also been applied to mobile marine 

species to determine cetacean distribution (Praca et al. 2009), seabird feeding 

habitats (Skov et al. 2008) and suitable lobster habitat (Wilson et al. 2007, 

Galparsoro et al. 2009). Furthermore, because presence-only models are 

comparatively robust to low occurrence sample size, often reaching near 

optimal performance between 30 and 50 occurrences (Stockwell & Peterson 

2002, Hernandez et al. 2006, Wisz et al. 2008), they are ideal for modelling 

applications where observation data is limited. These characteristics make 
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presence-only techniques well suited for marine demersal fish habitat 

suitability modelling.  

Species can potentially respond to habitat variables at different spatial scales 

(Freemark & Merriam 1986, Wilson et al. 2007). Because each species 

responds to the environment at a unique range of scales (Levin 1992), there is 

no single correct spatial scale at which to describe species-habitat relationships 

(Wiens 1989). Thus, assessing species–environment relationships at multiple 

scales are necessary (Cushman & McGarigal 2003) and are becoming 

commonplace (Carroll et al. 1999, Thompson & McGarigal 2002, Zabel et al. 

2003, Fischer et al. 2004, Wilson et al. 2007). Notolabrus tetricus (blue-throat 

wrasse) are a species common to the inshore waters of southern Australia 

(Shepherd & Clarkson 2001). Like numerous other wrasse species found along 

southern Australia, they are protogynous hermaphrodites (Barrett 1995, 

Shepherd & Clarkson 2001). Exhibiting well-defined home ranges ranging 

from 400 to 775 m2 for males and 225 to 725 m2 for females, they complete 

their life-cycle in a relatively small area (Barrett 1995). The species has 

recently become the focus of a rapidly expanding commercial line and trap 

fishery in Victoria, south-east Australia, with 27 licences across Victoria 

(Smith et al. 2003). Coupled with likely population structuring at a localised 

scale and a burgeoning fishing industry, the species has been identified as 

being highly susceptible to over-exploitation (Smith et al. 2003). Their 

sedentary and highly territorial nature (Barrett 1995) also means that they may 

exhibit strong associations with a particular habitat. This combined with their 

potential susceptibility to over-exploitation makes them an ideal candidate for 

habitat suitability modelling.  
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The objectives of this study are threefold. Firstly, ENFA was used to develop a 

habitat suitability model for N. tetricus. Secondly, models were run using 

MBES sampled at three spatial scales to determine the influence of scale in the 

prediction of N. tetricus habitat suitability. The use of the same occurrence 

dataset across the different spatial scale models permits a direct comparison of 

the model outputs. Finally, landscape pattern indices were applied using the 

best performing model to compare the spatial patterns of habitat suitability 

classes within the Discovery Bay Marine National Park (MNP) with adjacent 

waters.  

2.2 Materials and methods  

2.2.1 Study area  

The study site encompassed an area 42 km2 that was situated on the western 

side of Cape Duquesne (-38° 22′ S, 141° 21′ E) in Discovery Bay, south-

eastern Australia (Figure 1). The site ranged in depth from 12 to 79 m. Vertical 

basalt reef structures rise some 20 m from the seafloor, reflecting the region’s 

previous dynamic volcanic history (Boutakoff 1963).The tops of these reef 

structures support diverse assemblages of red algae and kelps (dominated by 

Ecklonia radiata, Phyllospora comosa and Durvillaea potatorum), while the 

deeper regions are covered in sponges, ascidians, bryozoans and gorgonian 

corals (Ierodiaconou et al. 2007a). 
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Figure 1. Bathymetric hillshade highlighting the study area used to investigate 
habitat suitability. Blue shading indicates water depth. Dashed black line shows 
Discovery Bay Marine National Park Boundary. Solid black lines illustrate 
towed-video transects positions. 

2.2.2 MBES survey and derived seafloor 
characteristics used in model construction 

The MBES derived bathymetry and backscatter variables were gridded to a 2.5 

m2 cell resolution. The MBES data were acquired on the 2nd and 3rd of 

November 2005 as part of the Victorian Marine Habitat Mapping Project 

(Ierodiaconou et al. 2007a). The MBES bathymetry and backscatter data were 

collected using a hull-mounted Reson Seabat 8101 multibeam system with 100 

% overlap of run lines to ensure full site coverage. Precise positioning was 

achieved using Starfix high precision (HP) Differential GPS system (± 0.30 m), 

integrated with a positioning and orientating system for marine vessels (POS 

MV) for heave (± 0.05 m or 5%, whichever is greater), pitch, roll and yaw 

corrections( all ± 0.021° accuracy). Navigation, data logging, real-time quality 

control, display and post-processing were carried out using the Starfix suite 7.1 
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(Fugro Survey Pty Ltd.). Sound velocity profiles were taken every 12 hour (h) 

during survey operations to account for variations in sound speed through the 

water column. Bathymetry data were corrected to the lowest astronomical tide 

based on reading from an Aquatec 320 tide gauge that was deployed during the 

survey. The XYZ data were then used to produce a bathymetric grid at 2.5 m 

horizontal resolution and a range resolution of ± 12.5 mm. Backscatter data 

were corrected for gain and time varied gain using the University of New 

Brunswick (UNB1) algorithm (Starfix suite 7.1). Data were post-processed by 

trained surveyors to hydrographic standards. Backscatter processing included 

the correction for transmission loss, the actual area of ensonification on the 

bathymetric surface, source level, and transmit and receive beam patterns (see 

Fonseca et al. 2008). Additionally backscatter was corrected for seafloor 

bathymetric slope from the MBES bathymetry dataset. Final products of the 

MBES survey constituted cleaned 2.5 m backscatter intensity (dB) and 

bathymetry (m) grid layers. 

The processed 2.5 m gridded backscatter and bathymetry were used to derive 

11 additional variables to further characterise local variation within the MBES 

imagery and delineate analogous regions of morphology and signal scattering 

(Table 1). These derivatives were selected for their expected influence over 

distribution of fish as found in previous investigations (e.g. rugosity- 

Friedlander & Parrish 1998, bathymetric variance- Pittman et al. 2007a, 

distance to nearest reef- Wedding et al. 2008, slope- Moore et al. 2009). They 

represent variation in seafloor characteristics in terms of proximity to reef 

(Euclidean distance to nearest reef), exposure to wave energy and seafloor 

currents (aspect, benthic position index; BPI, slope), complexity and surface 
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area of seafloor structure (complexity, rugosity, maximum curvature) and 

variations in high and low frequency signal scattering properties of the 

substratum recorded in the backscatter intensity dataset (Hue-Saturation-

Intensity). Euclidean distance to nearest reef was calculated using the spatial 

analyst tool in ArcGIS 9.3 based on an accurately modelled reef class (81 % 

accuracy) extracted from predicted substrata map (sourced from Ierodiaconou 

et al. 2007a) of the study area. The analysis was limited to MBES-derived 

seafloor characteristics because oceanographic variables are not available at the 

fine-scale resolution of the MBES datasets (2.5 m2). In addition, because of the 

relatively small spatial scale of the study area it was expected that there would 

be little variation in oceanographic characteristics (e.g. temperature). 

Variables were calculated at three spatial scales to assess which most 

influenced wrasse habitat suitability. The spatial scales were chosen to 

encompass the home range of 225–775 m2 estimated for N. tetricus (Barrett 

1995). Consequently, three window sizes of 3 × 3, 9 × 9 and 21 × 21 cells, 

which equates to ground areas of 56.25, 506.25, and 2756.25 m2 (hereafter 

referred to as fine, medium and coarse scale models) were included. These 

windows represent the finest model possible, a midpoint of the estimated home 

range and approximately 3.5 times larger than the home range. A correlation 

tree derived in Biomapper 4.0 was used to assess the correlation between 

variables at each spatial scale. To avoid incorporating redundant data, a default 

threshold of 0.5 was chosen in line with previous studies (Hirzel et al. 2002, 

Galparsoro et al. 2009). For each spatial scale, the same least correlated subset 

of 8 of the initial 13 variables (Table 1) were used to allow direct comparison 

of modelling results. 
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Table 1. Variables used in the ENFA models with biological relevance to Notolabrus tetricus. Kernels sizes give the number of cells or scale 
factor used to calculate fine, medium and coarse models 

Model Variables Variable description Kernels 
sizes 

Software 

Aspect- Eastness Because aspect is a circular variable (i.e. large values (359º) are very close to small 
values (1º)) the data were transformed. Aspect was transformed by trigonometric 
functions (Roberts 1986). Eastness values close to 1 represent east-facing slopes, 
while those facing west have a value close to -1. 

3, 9, 21 
cells 

Spatial 
Analyst- 
ArcGIS 9.3 

          - Northness Northness is represented in values close to 1 if the aspect is generally northward, 
close to -1 if the aspect is southward. 

3, 9, 21 
cells 

Spatial 
Analyst- 
ArcGIS 9.3 

Backscatter Backscatter intensity is important in quantifying physical properties of the seafloor 
(Le Gonidec et al. 2003). Provides a proxy for seafloor hardness and softness. 

 Fugro Starfix 
suite 7.1 

Bathymetry Bathymetry provides a measure of depth for the entire site.  Fugro Starfix 
suite 7.1 

Benthic Position 
Index 

Measure of a location relative to the overall benthoscape. Calculated by comparing 
the elevation of a cell with the mean elevation of surrounding cells by the three 
analysis extents (scale factors: 56, 506 and 2756). Regions with positive values are 
higher than their surroundings, where as areas negative values are lower. Flat areas 
have values closer to zero (Weiss 2001). 

8, 22, 52 
scale factor 

BTM Tool 
for ArcGIS 

Complexity Complexity provides a measure of the rate of change of the slope and a measure of 
localised variability in seafloor structure 

3, 9, 21 
cells 

ENVI 4.2 

Euclidean 
distance to reef 

The Euclidean distance (in m) to reef was calculated from extracting the reef class 
from a substratum map that was generated as a part of the Victorian Marine 
Mapping Project using a decision tree classifier (see Ierodiaconou et al. 2007a). 

 Spatial 
Analyst- 
ArcGIS 9.3 

HSI-blue A Synthetic Colour Image transformation was applied to the backscatter. This 
transforms backscatter from a gray scale image into a synthetic colour image by  

 ENVI 4.2 
      -green 
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Table 1. Continued…   
      -red applying high pass and low pass filters. Low pass data are assigned to hue, while 

high pass is assigned to intensity, and a fixed saturation level is used. These hue, 
saturation and intensity data are transformed into red, green, and blue (RGB) 
spectrum, producing a three band colour image. This transformation is commonly 
used with radar data to improve the display of subtle large-scale features while 
retaining fine detail (Daily 1983). 

  

Maximum 
Curvature 

Maximum Curvature provides the greatest curve, relative to its neighbors, of either 
the profile (i.e. the curvature in the direction of maximum downwards slope) or 
plan (i.e. the shape of the surface viewed as if a horizontal plane) convexity 
(Gallant & Wilson 1996). 

3, 9, 21 
cells 

ENVI 4.2 

Rugosity Rugosity, or vertical relief, is the ratio of surface area to planar area within 
analysis window and is to represent a measure of structural complexity (Lundblad 
et al. 2006). 

3, 9, 21 
cells 

BTM Tool 
for ArcGIS 

Slope Slope is the rate of change in bathymetry over the analysis window (Wilson et al. 
2007). 

3, 9, 21 
cells 

Spatial 
Analyst- 
ArcGIS 9.3 
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2.2.3 Towed-video fish surveys  

Towed-video transects, which were initially collected for benthic habitat 

mapping, were used to provide fish occurrence data for model training and 

testing (Ierodiaconou et al. 2007a). Nine transects, aligned perpendicular to the 

coast were selected to encompass the main physical gradients (e.g. depth, 

topographic variation, exposure). These nine transects covered 56 linear km of 

the study area (Figure 1). Over four days (24th, 25th March and 26th, 27th April 

2006) a micro remotely-operated vehicle (VideoRay Pro 3) was towed along 

the transects at 0.5-1 ms-1 (1-2 knots) to collect video data. The oblique angled 

camera was maintained approximately 2 m from the bottom using a vessel-

mounted winch system. A text overlay containing a time stamp and transect ID 

were recorded with the video using a Sony MiniDV recorder. The video 

footage was interrogated to identify fish to the lowest possible taxonomic 

resolution. The exact spatial position (± 5 m accuracy) of each fish taxon was 

then determined by matching the time stamp of the video with the 

corresponding survey positional data. The survey positional data were recorded 

through the integration of vessel location (Omnistar satellite dGPS), motion 

sensor (KVH) and acoustic camera positioning (Tracklink Ultra Short 

Baseline). Transects were analysed by the same observer to decrease any 

between operator bias. Video footage was only excluded from the analysis 

when the video quality was too poor to identify fish or view the seafloor. To 

minimise erroneously positioned fish, individuals were only counted if they 

were observed in the foreground (within 5 m of the camera) of the video 

footage.  
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2.2.4 Model formulation and evaluation  

The ENFA was used to develop the habitat suitability models using Biomapper 

4 software (Hirzel et al. 2007). For each spatial scale, rasters of the least 

correlated subset of variables were imported into the Biomapper program along 

with a grid identifying which cells were classified as ‘presence’ for N. tetricus. 

A Box–Cox transformation was used to improve the normality of the variables 

(Hirzel et al. 2002). The ENFA then reduces original variables to a subset of 

uncorrelated factors. MacArthur’s broken-stick rule (MacArthur 1957) was 

used to determine how many of these factors were retained in the habitat 

suitability calculation. The ‘broken-stick’ concept of MacArthur (1957) 

describes how species partition a resource pool in multi-dimensional space into 

non-overlapping niches. Based on this concept, the ‘Mac Arthurs broken-stick’ 

rule compares the Eigen value distribution of the factors to ensure that there is 

no overlap and that only those which are necessary are retained (i.e. with Eigen 

values > 1). Thus, the retained factors explain most of the information related 

to the distributions of the original variables and constitute the dimensions of 

the environmental-space for the calculation of habitat suitability. The important 

difference between ENFA, and other data reduction techniques such as 

principal components analysis, is that rather than only accounting for the 

variance among factors the ENFA factors have ecological relevance (Hirzel et 

al. 2002). Marginality of the species (i.e. how species’ habitat differs from the 

mean available conditions) is represented in the first factor, while 

specialisation (breadth of the ecological niche) is maximised in the subsequent 

factors (Hirzel et al. 2001). The factor coefficients give the importance of each 

variable to the different factors and the relative range of the variables preferred 
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by the species (positive coefficients indicate associations with areas above 

mean for that variable and the inverse for negative coefficients). They are also 

used to compute a global marginality (varying between 0 and 1, with higher 

values indicating greater differences) and specialisation (indicating some 

degree of specialisation when greater than 1). The distance geometric mean 

algorithm was used to generate habitat suitability maps. This algorithm 

computes a smooth set of habitat suitability envelopes by relating each 

observation cell in such a way that the denser these are in the environmental-

space, the higher the habitat suitability (Hirzel et al. 2007). A cell with a 

habitat suitability value of zero would have the least suitable combination of 

values for all variables, while a cell with a value of 100 would have the most 

suitable combination. To determine which spatial scale model performed best, 

habitat suitability models were evaluated in Biomapper 4 using the predicted-

to-expected ratio curve(p/e curve) and the continuous Boyce Index(B; Boyce et 

al. 2002, Hirzel et al. 2006). A perfect model would exhibit a straight 

increasing line p/e curve. The B is a Spearman rank correlation coefficient 

between the p/e ratio and the habitat suitability values. It varies from -1 to 1, a 

perfect model having a B = 1. Hirzel et al. (2006), however, compared the 

accuracy of different validation methods and found a B ~ 0.6 corresponds to an 

AUC > 0.9 (AUC evaluates the proportion of correctly and in correctly 

classified predictions over a continuous range of presence–absence thresholds. 

The closer AUC is to 1, the better the model). In practice, the occurrence data 

is partitioned into k independent subsets, and k-1 partitions are used as a 

calibration dataset, leaving the last partition for validation. A k = 10, together 

with 1 random seed, was used for each spatial scale model. To generate the p/e 
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curve for each model, three equal-width habitat suitability windows (0 – 33, 34 

– 67, and 68 – 100) were used. If a model properly predicts the suitable areas, 

the p/e ratio should be < 1 for unsuitable habitat, > 1 for moderately suitable 

habitat and >> 1 for highly suitable habitat. The p/e ratio should also exhibit a 

monotonic increase from unsuitable to highly suitable. B is then computed 

between the p/e ratio and the mean values of habitat suitability window. The 

p/e curve and B are then produced k (in this case 10) times, each time leaving 

out another validation partition, allowing the assessment of their central trend 

and variance (presented here as mean ± SD). Using the p/e curve, thresholds 

were estimated following Hirzel et al. (2006), which are the points where the 

curve is < 1, > 1 and >> 1. This permits reclassification of predicted maps into 

meaningful habitat suitability classes, which can then be used to analyse spatial 

patterns.  

2.2.5 Spatial patterns of Notolabrus tetricus habitat 
suitability  

Using the best performing model, the spatial arrangement and representation of 

the three habitat suitability classes (determined by p/e curve) were compared 

inside Discovery Bay MNP with adjacent waters. Patch Grid Analyst 4 

extension in ArcGIS 9.3 was used to generate six measures of landscape 

pattern indices. Twenty-two non-overlapping landscape analysis windows were 

randomly positioned in-and outside the MNP. The size of the landscape 

analysis window was selected following recommendations by O’Neill et al. 

(1996), suggesting that the landscape analysis window be 2-5 times larger than 

the largest patch of interest. A 550 × 550 m2 landscape analysis window was 

selected because it was large enough to contain the 98th percentile of habitat 
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suitability patches. For each landscape analysis window, interspersion and 

juxtaposition index (IJI), largest patch index (LPI), landscape shape index 

(LSI), mean patch size (MPS), mean shape index (MSI) and patch size 

coefficient of deviation (PSCV) were calculated (see footnotes in Table 5 for 

descriptions). While there are numerous landscape pattern indices available 

(McGarigal & Marks 1994), these were selected based on the findings by 

Teixido et al. (2002), who identified them as an adequate subset of indices to 

describe marine benthoscape patterns (akin to landscape patterns in terrestrial 

systems). The differences in these indices between the Discovery Bay MNP 

and adjacent waters were compared to assess the representativeness of the 

MNP for habitat suitability of N. tetricus. A non-parametric Kruskal–Wallis 

test was used for comparisons as the raw and transformed data did not conform 

to parametric assumptions. 

2.3 Results  

2.3.1 Ecological-Niche Factor Analysis modelling 
and scale selection  

A total of 83 N. tetricus individuals were identified from the video analysis, as 

some frames included multiple individuals this equated to 61 occurrences 

records. To determine which variable spatial scale most influenced the habitat 

suitability of N. tetricus, three ENFA models were generated. The models were 

based on three different spatial scales (fine: 56.25 m2, medium: 506.25 m2, and 

coarse: 2756.25 m2) and were constructed using the same occurrence dataset to 

enable direct comparison between outputs (Figures 2; 3). For each scale model, 

ENFA reduced the least correlated subset of variables (bathymetry, benthic 

position index, eastness, Euclidean distance to nearest reef, hue-saturation-
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intensity-blue, maximum curvature, northness and rugosity) to five explanatory 

factors (selected by comparison with the broken-stick distribution; MacArthur 

1957, Hirzel et al. 2002). These five explanatory factors were fitted using the 

distance geometric mean algorithm to define habitat suitability of N. tetricus at 

each spatial scale. 
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Figure 2. Predicted habitat suitability of Notolabrus tetricus for the different spatial scale models and occurrences: (a) fine spatial scale model: 
area 56.25 m2, (b) medium spatial scale model: area 506.25 m2, and (c) coarse spatial scale model: area 2756.25 m2. Habitat suitability models 
generated using the geometric mean algorithm within ENFA. 
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Figure 3. Predicted habitat suitability for Notolabrus tetricus over the whole 
study area using the coarse scale model. Inset map shows how presence cells 
(white dots) mainly fall within pixels with high habitat suitability. A few 
observations are in pixels with moderate-unsuitable habitat reflecting the fact 
that N. tetricus may not always occur in optimal habitat as indicated by the 
specialisation value. Heavy dashed black line delineates the Discovery Bay 
Marine National Park boundary.  

Global marginality, specialisation and Boyce Index values for each spatial 

scale investigated are presented in Table 2. Although all models performed 

well, the Boyce Index indicated that the coarse scale model (0.80 ± 0.26; 

Figure 4) performed better than both fine and medium scale models, 0.75 ± 

0.33 and 0.60 ± 0.42, respectively. The p/e curves for all models showed a 

positive monotonic trend as habitat suitability for N. tetricus increased; Figure 

4). As the spatial scale increased, global marginality was found to decrease 

from 1.03 to 0.95, but global specialisation values stayed the same (1.54). 

These global marginality and specialisation values indicate that, irrespective of 

the spatial scale analysed, N. tetricus were associated with regions that are 

different to the mean available but exhibit a relatively wide niche.  
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Figure 4. Cross-validation results for habitat suitability models for Notolabrus 
tetricus produced using the geometric mean in ENFA. Predicted-to-expected 
ration indicates the number of species occurrence cells encountered between 
cross-validation runs (k = 10). 

 

Table 2. Continuous Boyce Index (B, varying between -1 and 1), global 
marginality (M, varying generally between 0 and 1) and global specialisation 
(S, indicating some degree of specialisation when superior to 1) for the fine, 
medium and coarse scale models. 

Scale B (mean ± SD) M S 
Fine 0.7 ± 0.33 1.03 1.54 
Medium 0.6 ± 0.42 0.93 1.54 
Coarse 0.8 ± 0.26 0.92 1.54 

2.3.1.1 Fine scale model 

The marginality factor indicated a strong relationship for areas close to reef (-

0.61) and high rugosity (0.61; Table 3). This factor also showed the importance 

of higher HSI-b values (0.31), shallow water (bathymetry: 0.30) and high 

maximum curvature (0.25). Specialisation coefficients highlighted that N. 

tetricus are restricted to regions that are shallow water (bathymetry: 0.79), low 

HSI-b (-0.69), east facing (eastness: 0.66), depressions (BPI: -0.59), close 

proximity to reef (0.55) and lower maximum curvature (-0.43). Northness at 

this scale did not appear to be important (Table 3).  
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2.3.1.2 Medium scale model  

The marginality factor showed a similar trend to the fine scale model, with a 

strong association for areas close to reef (-0.67), whereas maximum curvature 

had a greater influence (0.39). High rugosity (0.39), higher HSI-b values 

(0.33), shallow water (bathymetry: 0.32) were also found to be important. 

Specialisation coefficients highlighted that all eight variables were important. 

N. tetricus were restricted to areas that had low HSI-b (-0.92), north-west 

facing (eastness: -0.85, northness: 0.47), shallow water (-0.80) and high 

rugosity (0.24; Table 3).  

2.3.1.3 Coarse scale model  

The marginality factor showed the same trend as that of the fine scale model. A 

strong association was evident with areas close to reef (-0.68), high rugosity 

(0.47), high HSI-b values (0.34), shallow water (0.33) and high maximum 

curvature (0.29; Table 3). Specialisation coefficients indicated that N. tetricus 

were restricted to areas that were north-east facing (northness: 0.86, eastness: 

0.78), high HSI-b (0.85), close to reef (-0.53), on top of crests (0.22) and in 

shallow water (0.33; Table 3).  



33 | P a g e  
 

Table 3. Contribution of the variables to the factors generated by ENFA used 
to build the three different spatial scale models of habitat suitability for 
Notolabrus tetricus. Coefficients are sorted by decreasing value of coefficients 
on the marginality factor (M). Specialisation values for each factor are 
represented (in brackets) by S. Variables that make the largest contribution (<-
0.1 or >0.1) to each factor are highlighted in bold. 

Fine scale  
Variables 

Factor 1  
M (100%) 
S (43%) 

Factor 2 
S (24%) 

Factor 3 
S (15%) 

Factor 4 
S (6%) 

Factor 5 
S (4%) 

Distance to nearest reef -0.61 0.55 -0.10 0.39 0.02 
Rugosity 0.61 0.00 0.05 0.04 0.02 
HSI-b 0.31 0.34 -0.69 0.41 -0.17 
Bathymetry 0.30 0.76 0.36 -0.01 0.27 
Maximum curvature 0.25 0.01 0.10 0.26 -0.43 
Eastness 0.09 0.00 0.15 0.49 0.66 
BPI 0.03 0.07 -0.59 -0.59 0.52 
Northness -0.01 -0.03 -0.04 -0.10 0.09 

            
Medium scale 
Variables 

Factor 1  
M (100%) 
S (46%) 

Factor 2 
S (27%) 

Factor 3 
S (10%) 

Factor 4 
S (6%) 

Factor 5 
S (6%) 

Distance to nearest reef -0.67 -0.54 -0.26 -0.27 0.17 
Maximum curvature 0.39 -0.02 0.09 -0.07 0.01 
Rugosity 0.39 -0.02 0.03 -0.14 0.24 
HSI-b 0.33 -0.25 -0.92 0.15 0.07 
Bathymetry 0.32 -0.80 0.26 -0.25 -0.01 
BPI -0.14 -0.01 -0.05 -0.09 0.47 
Eastness 0.11 0.06 -0.06 -0.85 0.24 
Northness 0.05 0.03 -0.01 0.29 0.79 

            
Coarse scale 
Variables 

Factor 1  
M (100%) 
S (44%) 

Factor 2 
S (28%) 

Factor 3 
S (11%) 

Factor 4 
S (7%) 

Factor 5 
S (5%) 

Distance to nearest reef -0.68 -0.53 0.12 0.44 0.22 
Rugosity 0.47 0.04 -0.14 0.18 0.13 
HSI-b 0.34 0.22 0.85 0.27 0.05 
Bathymetry 0.33 0.81 -0.33 0.19 0.11 
Maximum curvature 0.29 0.01 -0.02 0.05 0.10 
BPI -0.07 -0.01 0.03 0.04 0.22 
Eastness 0.06 -0.05 -0.33 0.78 0.35 
Northness 0.00 -0.09 0.14 -0.24 0.86 
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2.3.2 Spatial patterns of Notolabrus tetricus habitat 
suitability 

Only minimal differences were observed when total predicted area of the three 

habitat suitability classes (i.e. unsuitable, moderately and highly suitable) were 

compared (Table 4). To compare the spatial patterns in habitat suitability 

classes within the Discovery Bay MNP with adjacent waters six landscape 

pattern indices were applied to the best performing coarse-scale ENFA model. 

The IJI exhibited significantly lower values in the MNP compared to adjacent 

waters for unsuitable (H = 13.20, df = 1, p < 0.001) and highly suitable (H = 

10.24, df = 1, p < 0.001) habitat classes indicating that they are both unevenly 

distributed (Table 5). Although statistically non-significant in- and outside the 

MNP, IJI for moderately suitable habitat exhibited much greater values 

compared to unsuitable and highly suitable habitats, indicating a more even 

arrangement of patches. In contrast, the mean shape index (MSI) for unsuitable 

habitat was significantly larger (H = 4.88, df = 1, p < 0.05) in the MNP. All 

habitat suitability classes exhibited mean MSI values greater than one, 

indicating that they all exhibit noncircular patch shapes. Largest patch index 

(LPI) and mean patch size (MPS) showed similar trends with high values being 

recorded for unsuitable habitat monotonically decreasing to highly suitable 

habitat but were statistically non-significant between regions. Low LPI and 

MPS values for highly suitable habitat indicate that the largest and mean 

patches are smaller than other suitability classes presented. Landscape shape 

index (LSI) and patch size coefficient of deviation (PSCV) exhibited higher 

values for moderately suitable habitat compared to unsuitable and highly 

suitable but were not significantly different (Table 5).  
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Table 4. Comparison of predicted habitat suitability class areas inside 
Discovery Bay Marine National Park compared to the adjacent unprotected 
region. Areas are given in km2 with % contained within each region in 
brackets. 

Habitat suitability Inside MNP Outside MNP 
Unsuitable 22.3 (84.8) 13.0 (82.8)
Moderately  3.1 (11.8) 2.0 (12.7)
Highly 0.9 (3.4) 0.7 (4.5)
Total 26.3 (100) 15.7 (100)
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Table 5. Landscape indices used to assess the spatial arrangement and 
configuration of habitat suitability for Notolabrus tetricus inside and out of 
Discovery Bay Marine National Park (MNP). Significant difference between 
the Marine National Park and adjacent region are shown in bold and denoted 
by * p < 0.05. ** p < 0.001. Descriptions of indices are given in footnote. 
Descriptions modified from McGarigal and Marks (1994).2 

Landscape pattern index Region Suitability Class Mean ± SD 
LPI Inside MNP Unsuitable 64.04 ± 37.32 
  Moderately 23.79 ± 23.98 
  Highly 11.05 ± 22.44 
 Outside MNP Unsuitable 78.73 ± 30.71 
  Moderately 11.95 ± 17.78 
  Highly 6.44 ± 13.13 
LSI Inside MNP Unsuitable 3.11 ± 1.96 
  Moderately 6.38 ± 3.72 
  Highly 4.21 ± 4.18 
 Outside MNP Unsuitable 2.50 ± 1.76 
  Moderately 4.81 ± 4.28 
  Highly 4.77 ± 3.14 
IJI Inside MNP Unsuitable 0.48 ± 0.51** 
  Moderately 42.13 ± 33.37 
  Highly 0.17 ± 0.43** 
 Outside MNP Unsuitable 7.35 ± 12.30** 
  Moderately 39.06 ± 45.04 
  Highly 17.51 ± 18.21** 
MSI Inside MNP Unsuitable 1.39 ± 0.32* 
  Moderately 1.47 ± 0.25 
  Highly 1.56 ± 0.16 
 Outside MNP Unsuitable 1.19 ± 0.16* 
  Moderately 1.42 ± 0.25 
MPS Inside MNP Unsuitable 10.42 ± 13.57 
  Moderately 0.52 ± 1.04 
  Highly 0.14 ± 0.41 
 Outside MNP Unsuitable 15.03 ± 14.53 
  Moderately 0.10 ± 0.08 
  Highly 0.05 ± 0.07 
PSCV Inside MNP Unsuitable 277.58 ± 330.84 
  Moderately 471.87 ± 374.69 
  Highly 342.56 ± 325.53 
 Outside MNP Unsuitable 226.65 ± 238.20 
  Moderately 354.81 ± 330.58 
  Highly 308.51 ± 224.32 
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2 Largest Patch Index (LPI) is the percentage of the landscape window 
comprised by the largest patch. With low values indicating the largest patch in 
the landscape is increasingly small. Landscape Shape Index (LSI) is the sum of 
the all edge segments (m) within the landscape boundary involving the 
corresponding patch type, divided by the square root of the total landscape area 
(m2), and adjusted by a constant for square raster cell edges. The larger the LSI 
the more irregular the patch shape. Mean Shape Index (MSI) is the patch 
perimeter (m) divided by the square root of patch area (m2) for each 
corresponding patch type, adjusted by a constant for a square raster cell edge, 
divided by the number of patches of the same type. When MSI equals one all 
patches of the corresponding patch type are circular. Mean Patch Size (MPS) is 
the total landscape area (m2), divided by the total number of patches, divided 
by 10000 (to convert to hectares). Interspersion and Juxtaposition Index (IJI) is 
the observed interspersion (%) over the maximum possible interspersion for the 
given number of patch types. When IJI approaches 100% all patches are 
equally and maximally adjacent to all other patch types. Patch Size Coefficient 
of Deviation (PSCV) is the variability in patch size relative to the mean patch 
size (Note, this is the population mean, not the sample mean). 



38 | P a g e  
 

2.4 Discussion  

Models were based on high-resolution MBES-derived variables and towed-

video observations at three spatial scales. The coarse-scale ENFA model 

provided the best prediction of habitat suitability for N. tetricus. Using this 

coarse-scale prediction, the spatial patterns of habitat suitability classes were 

compared. It was found that both unsuitable and highly suitable habitat classes 

were more unevenly distributed inside the MNP, while unsuitable patches 

exhibited more complex shapes inside the MNP. Based on the results, four 

main points will be discussed: (i) issues surrounding the use of presence-only 

models on remotely-sensed datasets; (ii) the importance of spatial scale for 

predicting habitat suitability of N. tetricus; (iii) importance of habitat 

parameters identified by the models; and, (iv) spatial patterns in habitat 

suitability classes.  

2.4.1 Predictive ability of models  

All three variable scales yielded model performances that were comparable 

with other good performing ENFA models in the literature (e.g. Hirzel & 

Arlettaz 2003, Wilson et al. 2007). While these models exhibit variability 

among cross-validation results, even the lower end of these ranges produced 

adequate p/e ratio values and good separation between suitability windows. 

This supports the idea that the ENFA technique appears to be well matched to 

modelling habitat requirements of marine demersal fish based on remotely-

sensed datasets. A presence-only modelling approach was chosen over 

presence/absence methods because there are difficulties in obtaining reliable 

absence data from remotely-sensed video datasets. While it is acknowledge 
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that to attain ‘perfect detection’ (i.e. probability of 1) is unrealistic, obtaining 

‘true’ absence data (when animals are actually absent) is problematic for 

mobile or inconspicuous species, such as demersal fishes. Kéry (2002), for 

example, estimated that 12-34 visits to a site are needed before assuming a 95 

% probability that a site is unoccupied. ‘False’ absence data, when animals are 

present but not detected, can significantly bias the generated model. This 

shortcoming can be avoided using presence-only methods, such as ENFA 

(Hirzel et al. 2002). Because of the use of presence-only data, however, such 

methods tend to overestimate the area of suitable habitat (Zaniewski et al. 

2002). Overestimating, however, might be more preferable to underestimating 

their existence, particularly when considering a commercially or ecologically 

important species that is likely to be targeted by management (Fielding & Bell 

1997). Indeed, presence-only methods predict the potential distribution 

(fundamental niche; i.e. the total range of environmental conditions that are 

suitable for a species existence without the effects of interspecific competition 

and predation from other organisms), whereas presence/absence methods 

reflect the present distribution (realised niche; i.e. the part of the fundamental 

niche that a species actually occupies) of the species (Zaniewski et al. 2002, 

Brotons et al. 2004). Even though presence-only methods have limitations, 

they are increasingly being shown to be a useful approach for predictive habitat 

modelling in marine environments. Another important factor that influences the 

predictive performance of these models is variable selection (Araújo & Guisan 

2006). The models were generated based on seafloor variables because of 

availability of data (MBES data) and the known ecology of the species (strong 

seafloor associations; Johnson & Gillingham 2005). While the models 
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performed well, the addition of other variables may further improve their 

predictive capabilities. For a detailed discussion of additional variables see 

Chapter 6 section 6.2.1 

2.4.2 Spatial scale  

By comparing the three different scale models in this study, the results 

indicated that the coarse model (2756.25 m2) produced better suitability results 

compared to fine and medium. The value of 2756.25 m2 is substantially larger 

than the home range estimates of 400–775 m2 for males and 225–725 m2 for 

females (Barrett 1995). The results, however, support the suggestion that 

habitat selection of space-demanding species may be dominated by variables 

operating above the home-range scale (Carroll et al. 1999). While the coarse-

scale model performed better overall, variable importance differed at the three 

spatial scales analysed. Maximum curvature, for example, was found to have a 

stronger influence at the medium scale compared to fine and coarse scales. 

This is in agreement with the idea that species respond to their environment at 

multiple spatial scales. Similar scale-dependence of single habitat variables has 

been found for both terrestrial and marine species. For example, Fisher et al. 

(2004) found that the distribution of some reptile species were influenced by 

habitat structure at one, but not all, spatial scales. Similarly, Moore et al. 

(2009) found that the distributions of the four demersal fish species were better 

represented by the coarse-scale variables (i.e. variables with a 2 × 2 m cell 

resolution calculated with a kernel radius of 25 m), with only one model 

providing a better fit with the fine-scale environmental variables (i.e. variables 

with a 2 × 2 m cell resolution calculated with a kernel radius of 12.5 m). 
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2.4.3 Variables selected by the models  

The results confirmed that benthoscape-scale variables derived from MBES 

data can explain a large proportion of the variability describing the habitat 

suitability of N. tetricus . They also support the idea that factors operating at 

the benthoscape-scale could explain the variance of species occurrence that 

may not be explained by fine-scale habitat associations (Storch 2002). 

Although varying slightly over the three scale models, N. tetricus showed a 

strong association with regions of shallow water, close to reef, with high 

rugosity and maximum curvature and low HSI-b values. Mature N. tetricus 

preferably live on relatively deep and exposed reef-dominated habitats, while 

juveniles occur in large numbers on shallow seaweed-dominated reefs 

(Shepherd & Clarkson 2001). This general habitat association is reflected by 

the strong correlations with low values of Euclidean distance to nearest reef 

and bathymetry, and high values of rugosity and maximum curvature in the 

models. As expected, it was found that models predicted the largest areas of 

highly suitable habitat to be shallow reef areas. These regions are dominated by 

large stands of kelp (mainly Ecklonia radiata; Ierodiaconou et al. 2007a), and 

perhaps reflect the habitat use of juveniles. Models also predicted smaller 

patches of highly suitable habitat in deeper regions at the northern end of the 

site, and may reflect more isolated adult populations (Figure 3). This is only 

speculative as models did not take into account different size-class fish. This is 

because the towed-video system utilised here is not capable of providing 

accurate length measurements. However, given adequate data, building similar 

models based on different size-class fish may enable the detection of 

differences in habitat uses throughout the life history of N. tetricus.  
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2.4.4 Spatial patterns of Notolabrus tetricus habitat 
suitability  

The decline of many species has been linked directly to habitat loss and 

fragmentation (Fahrig 2003). Conservation strategies now frequently consider 

not only the amounts of habitat that must be retained, but also the spatial 

configurations of habitat across landscapes of concern (Pulliam et al. 1992, 

O'Neill et al. 1996). By generating spatially-continuous models of habitat 

suitability and applying a suite of landscape pattern indices, the research 

presented here is able to provide management agencies with accurate 

information that not only indicates where habitat suitability patches are located, 

but also an indication of size, variability, isolation, position, spatial 

arrangement and boundary characteristics (McGarigal & Marks 1994). It was 

found that there were minimal differences in predicted areas of the habitat 

suitability classes represented inside the MNP compared to the adjacent 

unprotected region. However, when the spatial patterns of habitat suitability 

classes were compared a few significant differences were observed. Unsuitable 

patches exhibited more complex shapes inside the MNP, while both unsuitable 

and highly suitable habitat classes were more unevenly distributed inside the 

MNP. It is not surprising that only a few differences were observed in the 

spatial characteristics in habitat suitability classes between the two regions. 

Recent habitat mapping studies along the Victorian coastline have revealed 

complex, spatially heterogeneous reef systems that support a diversity of 

benthic habitats (Ierodiaconou et al. 2007b, Holmes et al. 2008, Rattray et al. 

2009). Intuitively, with N. tetricus showing such strong associations with 

seafloor structure, it is likely that the adjacent seafloor regions that exhibit 
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similar heterogeneous seafloor characteristics reflect this in terms of habitat 

suitability.  

2.5 Conclusions  

The present research highlighted the benefits of having spatially-continuous 

layers of environmental data rather than the sparsely-located categorical or 

linear descriptors relied on by earlier studies (Friedlander & Parrish 1998, 

Babcock et al. 1999, Westera et al. 2003). By providing spatially-continuous 

coverage across an entire site this research enabled the prediction of habitat 

suitability based on video occurrence records and variables derived from 

MBES over large regions of seafloor. Through these models, the importance of 

spatially-continuous variables and the influence of spatial scale on the 

prediction of habitat suitability for N. tetricus were determined. Furthermore, 

the research enabled the quantification of spatial arrangement and 

representation of habitat suitability to provide marine managers with a level of 

information that has historically been limited to coarse spatial resolutions. 

Practitioners should remember, however, that these models predict a species 

potential habitat suitability, or distribution, and should not replace but 

compliment empirical research. 
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Chapter 3 
 
 

Comparing presence-only 
algorithms for predicting 
habitat suitability for marine 
demersal fishes3 

 

                                                 
3 The research in this chapter has been published as Monk, J. Ierodiaconou, D. Versace, V. L., 
Bellgrove, A., Harvey, E., Rattray, A., Laurenson, L., and Quinn G.P. (2010). Habitat 
suitability for marine fishes using presence-only modelling and multibeam sonar. Marine 
Ecology Progress Series. 420: 157-174.  
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3.1 Introduction 

Understanding species’ distribution and associated measures of habitat 

suitability are fundamental elements of any planning or management program 

(Franklin 1995, Pearce & Ferrier 2001). In the terrestrial context, models of 

species distribution have long been recognised as cost-effective and powerful 

tools to estimate species’ occurrence across a landscape where limited direct 

observations exist (Pearce & Ferrier 2001, Ferrier et al. 2002a, Ferrier et al. 

2002b, Zaniewski et al. 2002, Elith et al. 2006, Guisan et al. 2006, Hirzel et al. 

2006, Braunisch et al. 2008). These models are predicated on the assumption 

that the spatial variation in environmental factors (e.g. topography) used by a 

species influence (either directly or indirectly) its geographic distribution 

(Guisan & Zimmermann 2000). It is only recently that predictive species 

distribution models have been used to predict species’ occurrence in 

management of the marine environment. These include applications to identify 

high conservation priority areas (Cañadas et al. 2005), assess the spatial 

patterns of suitable habitat within protected areas (Chapter 2), predict sites at 

risk of invasion by exotic species (Compton et al. 2010) and investigate the 

distribution of coral disease (Williams et al. 2010a). 

Parallel to the development and application of species distribution modelling in 

the marine environment, is the increasing access to MBES technology and 

underwater video systems. As mentioned in Chapter 2 section 2.1, these 

technological developments make it possible to apply a variety of terrain-

analysis techniques that form predictor variable datasets for input into models 

(see Wilson et al. 2007).  
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While traditionally used for assessing sessile species, underwater video 

systems such as drop video, towed/drift video and remotely operated vehicles 

(ROV) are increasingly being used as cost-effective, non-destructive, methods 

for assessing marine fish species distributions (Morrison & Carbines 2006, 

Anderson & Yoklavich 2007, Williams et al. 2010b). These video-based 

survey methods have significant advantages over traditional methods (e.g. 

SCUBA divers) in collecting fish occurrence data. They are capable of being 

deployed at depths and times that are dangerous for divers (Assis et al. 2007), 

provide a permanent record of survey (Watson et al. 2005), afford accurate 

positioning when coupled with differential GPS and acoustic positioning, 

enable high replication and, in the case of drift/towed and ROV, capture 

transitions between different habitat types (Spencer et al. 2005). However, 

video-based survey methods also have a number of disadvantages, including 

restricted field of view and the need for high water clarity that result issues 

surrounding accurate detection and species identification (Murphy & Jenkins 

2010). Mueller et al. (2006), for example, estimated that a stationary 

underwater video camera was able to detect around 45-75 % of large (i.e. 30-

50 cm) trout in water with turbidity levels equivalent to those encountered in 

shallow temperate marine waters (i.e. 0-4 Nephelometric Turbidity Units; 

NTU). Additionally, towed-video systems are constantly moving (i.e. up, down 

and side-to-side) and are often ‘flown’ over highly rugose reef systems covered 

in a dense canopy forming macroalgae. These factors combined have the 

potential to underestimate species’ distributions because fish may simply be 

hiding under or camouflaged within the canopy and reef. Consequently, 

observations of demersal fishes derived from such towed-video techniques may 
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lead to the inclusion of ‘false absences’ (i.e. a failure of the survey to detect the 

species when it is actually present). Incorporation of such ‘false absences’ has 

the potential to bias model predictions (Hirzel et al. 2001).  

Integrating towed-video data capture methods and MBES in a presence-only 

predictive modelling framework has the potential to improve our understanding 

of the fine-scale spatial ecology and distribution of many marine fish species, 

while avoiding issues of ‘false’ absences. Presence-only models have two 

unique attributes that make them potentially more useful than presence/absence 

models for estimating habitat suitability for marine demersal fishes based on 

towed-video observations. First, presence-only models do not require the 

explicit constraints indicated by absence data. Considering the issues 

surrounding accurately surveying fish assemblages using towed-video, it would 

be inappropriate to treat localities without an observed presence as unsuitable. 

Instead, presence-only approaches are based on constructing a model of a 

species’ niche from locational records. This modelled niche/habitat signature 

can then be used to predict distribution, or suitability, within the available 

environment. Second, most presence-only models are designed to function well 

even when limited to very small occurrence datasets (Engler et al. 2004, 

Hernandez et al. 2006), meaning that useful models of habitat suitability can 

often be developed from very few presence locations (i.e. ~ 30 observations). 

This feature is particularly important because of the often small sample sizes 

obtained from marine fish surveys (Langlois et al. 2010).  

There is a broad array of quantitative approaches available to model species’ 

habitat suitability based on presence-only datasets (e.g. Nix 1986, Stockwell & 
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Noble 1992, Robertson et al. 2001, Hirzel et al. 2002, Phillips et al. 2006, Li & 

Hilbert 2008). Consequently, researchers are faced with the difficulty of 

selecting between numerous presence-only modelling approaches. Relatively 

few studies have compared more than three different methods on the same 

data, and the majority of these have focused on terrestrial, freshwater or 

simulated datasets (Elith & Burgman 2002, Ferrier et al. 2002b, Olden & 

Jackson 2002, Farber & Kadmon 2003, Loiselle et al. 2003, Brotons et al. 

2004, Segurado & Araújo 2004, Elith et al. 2006, Tsoar et al. 2007). The 

effective application of presence-only modelling methods in the marine 

environment, however, has received less attention, specifically in relation to 

demersal fish species. Only two studies exist that have compared presence-only 

algorithms for marine organisms (MacLeod et al. 2008, Tittensor et al. 2009). 

Macleod et al. (2008) used data on the occurrence of harbour porpoises to 

compare the predictive abilities of one presence/absence approach (generalised 

linear modelling) and three presence-only approaches (principal component 

analysis-based approach, genetic algorithm for rule-set prediction and ENFA). 

They concluded that presence-only approaches can produce models of habitat 

suitability of marine species that are significantly better than random and 

exhibit comparable performances to presence/absence modelling approaches 

(MacLeod et al. 2008). Similarly, Tittensor et al. (2009) compared MAXENT 

and ENFA to model the global distribution of suitable habitat for scleractinia 

stony corals on seamounts. They concluded that MAXENT consistently 

outperformed ENFA. 

In the marine environment, studies have predominantly focused on how 

variations in predictor variables (e.g. seafloor characteristics such as 
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bathymetry or rugosity) affect the ability of the models to predict species 

distributions (e.g. Pittman et al. 2009). In the terrestrial context, in addition to 

the predictor variables, the influence of response variables (i.e. the ecological 

characteristics of the species’ occurrence data) has been more widely 

investigated (e.g. Araújo & Williams 2000, Pearce & Ferrier 2000, Manel et al. 

2001, Pearce et al. 2001, Segurado & Araújo 2004, Sérgio et al. 2007). An 

organism with a narrow range of environmental requirements (i.e. clearly 

definable niche) is likely to return a better performing model in terms of model 

diagnostics (e.g. model performance measures such as kappa and AUC; Pearce 

& Ferrier 2001, Brotons et al. 2004, Segurado & Araújo 2004, Elith et al. 

2006). In contrast, it may be more difficult to define the habitat characteristics 

of an organism with a much wider range of environmental tolerances as there 

are more combinations of biophysical factors that could potentially be used as 

habitat.  

In this study, the relative performance of presence-only modelling approaches 

to predict habitat suitability of marine fish taxa using remotely-sensed 

occurrence and high-resolution MBES-derived seafloor datasets was compared. 

Specifically, data on five demersal fish taxa and two measures of model 

performance were used to compare 10 different modelling algorithms: 

BIOCLIM, DOMAIN, ENFA (using the seven available algorithms in the 

software) and MAXENT. Previous evidence indicates differences in model 

performance may depend on the species range and environmental niches 

(Pearce & Ferrier 2000, Brotons et al. 2004, Segurado & Araújo 2004, Elith et 

al. 2006). How variation in these factors influence model performance was also 

investigated. Finally, the key seafloor variables that influence the spatial 
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distribution were identified and discussed in terms of the known ecology of 

each taxon investigated.  

3.2 Materials and methods 

3.2.1 Study site  

The research presented in this chapter was undertaken at the Discovery Bay 

study site. Details of this study location are presented in Chapter 2 section 

2.2.1. 

3.2.2 Fish occurrence data for model training and 
testing 

The fish occurrence datasets used in this chapter are derived from the same 

demersal fish surveying program (i.e. towed-video) outlined in Chapter 2 

section 2.3.3. 

More than 7300 individual fish, representing 40 species, were observed 

(Appendix 1). Some video frames included multiple individuals of the same 

species resulting in a total of 1648 observational events. From these 

observations, occurrence data for the five most commonly observed demersal 

fish taxa were used (Table 6). For each taxon, 10 random partitions of the 

occurrence localities were made. Each partition was created by randomly 

selecting 75 % of the occurrence localities as training data, with the remaining 

25 % reserved for testing the resulting models (Table 6). Ten random partitions 

were used to assess the average performance of the algorithms, and to allow for 

statistical testing of observed differences in performance for each taxon. 
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Table 6. Partitioning of occurrence data into training and test localities. 

Taxon Common Name Training Testing Total 
Caesioperca spp. Perch 710 237 946 
Cheilodactylus nigripes Magpie morwong 25 8 33 
Notolabrus tetricus Blue-throat wrasse 47 16 62 
Pempheris multiradiata Common bullseye 38 13 50 
Pseudolabrus psittaculus Rosy wrasse 283 94 377 

3.2.3 MBES survey and derived seafloor 
characteristics used in model construction 

This chapter used the same processed MBES bathymetry and backscatter 

datasets as detailed in Chapter 2 section 2.3.2. However, to simplify 

comparisons between models across the five focal fish taxa only fine-scale 

MBES-derived variables (i.e. variables calculated based using 3 × 3 cell-

analysis window) were used (Table 1; Chapter 2 section 2.3.2). As in Chapter 

2, to reduce the likelihood of model over-fitting, a covariance matrix and 

correlation tree, using a correlation coefficient threshold of 0.5 (Hirzel et al. 

2002, Galparsoro et al. 2009), were used to reduce the 13 variables to the eight 

least correlated (Table 7). Consequently, bathymetry, benthic position index 

(BPI), eastness, Euclidean distance to nearest reef, hue-saturation-intensity-

blue (HSB-b; backscatter derivative), maximum curvature, northness and 

rugosity were retained for model construction (Figure 5; Table 1; Chapter 2 

section 2.3.2). These variables were chosen as they captured the main seafloor 

characteristics and many of them are known to be important determinants of 

demersal fish habitat (e.g. rugosity- Friedlander & Parrish 1998, bathymetric 

variance- Pittman et al. 2007a, distance to nearest reef- Wedding et al. 2008, 

slope- Moore et al. 2009). Again, the analysis was limited to MBES-derived 

seafloor characteristics because oceanographic variables are not available at the 

fine-scale resolution of the MBES datasets (2.5 × 2.5 m). In addition, because 
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of the relatively small spatial scale of the study area it was expected that there 

would be little variation in oceanographic characteristics (e.g. temperature). 
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Table 7. Correlation matrix used to assess independence between seafloor variables. A 0.5 threshold was applied to determine the 
least correlated variables that were retained for model construction (shown in bold). 

 

Backscatter Bathymetry BPI Complexity Eastness Euclidean 
distance to 
nearest reef

HSI-b HSI-g HSI-r Maximum 
curvature 

Northness Rugosity 

Bathymetry -0.894            
BPI -0.022 0.043           
Complexity 0.223 -0.168 0.134          
Eastness 0.289 -0.279 0.06 0.296         
Euclidean 
distance to 
nearest reef 

-0.015 -0.125 -0.138 -0.607 -0.262 
      

 

HSI-b 0.152 0.036 0.048 0.186 0.138 -0.363       
HSI-g -0.769 0.749 0.043 -0.114 -0.208 -0.143 -0.205      
HSI-r 0.59 -0.622 -0.049 0.027 0.131 0.246 -0.319 -0.683     
Maximum 
curvature -0.023 0.057 0.279 0.331 0.089 -0.254 0.089 0.038 -0.091   

 

Northness -0.058 0.06 0.008 -0.034 -0.089 -0.025 -0.083 0.04 0.035 -0.014   
Rugosity -0.038 0.086 0.128 0.341 0.071 -0.266 0.111 0.051 -0.127 0.461 -0.023  
Slope 0.115 -0.049 0.106 0.679 0.141 -0.515 0.221 -0.038 -0.094 0.345 -0.025 0.375 
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Figure 5. Zoomed examples of the eight variables used in model construction. Darker shading indicates high values. a) Euclidean distance to 
nearest reef. b) bathymetry. c) eastness. d) northness. e) benthic position index. f) rugosity. g) hue-saturation-intensity-blue. h) maximum 
curvature. i) hillshade of study area showing extent of zoomed examples. 
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3.2.4 Modelling approaches 

Four distinct modelling approaches were used; however ENFA outcomes were 

converted into geographic-space using all seven available algorithms, resulting 

in 10 different models for each of the five fish taxa. Each algorithm was run on 

each of the 10 fish-occurrence data partitions, resulting in 500 model runs. 

Predictive models used were; BIOCLIM (Busby 1986, Nix 1986), DOMAIN 

(Carpenter et al. 1993), ENFA (using all seven available algorithms; Hirzel et 

al. 2002, Braunisch et al. 2008), and MAXENT (Phillips et al. 2006). All of 

these methods are based on the concept of the ecological niche (Hutchinson 

1957). Each method uses mathematical algorithms to define the ecological 

niche of the focal taxon based on the distribution of the occurrence records in 

multidimensional environmental-space. Once this niche is defined, it is 

projected into geographic-space to produce a predictive map of suitable habitat. 

Both BIOCLIM and DOMAIN were run through DIVA-GIS (Hijmans et al. 

2005, Hijmans & Graham 2006). The BIOCLIM predicts suitable conditions in 

a ‘bioclimatic envelope’, consisting of a rectilinear region in environmental-

space representing the range (or some percentage thereof) of observed presence 

values in each environmental dimension. This envelope specifies the model in 

terms of percentiles or upper and lower tolerances of variables, and does not 

allow for regions of absence (i.e. ‘holes’) within the envelope. In this study a 

percentile range of 95 % (excluding 2.5 % of the values either side of the 

rectilinear box in environmental-space) was used. Similarly, DOMAIN 

(Carpenter et al. 1993) uses the Gower metric, a distance measure that 

standardises each variable by its range over all occurrence observations to 
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equalise the contribution of all variables. A predicted suitability index is given 

by computing the minimum distance in environmental-space to any occurrence 

record. 

The ENFA was conducted through Biomapper 4 software (Hirzel et al. 2007). 

It is similar to principal components analysis, involving a linear transformation 

of the environmental-space into orthogonal ‘marginality’ and ‘specialisation’ 

factors. Environmental suitability is then modelled by seven different distance-

based algorithms in the transformed-space (distance geometric mean, distance 

harmonic mean, medians, area-adjusted median, median + extremum, area-

adjusted median + extremum and minimum distance). These algorithms make 

the assumptions that, on all ENFA factors, either the geometric mean, 

harmonic mean, median, or minimum distance of the species distribution offers 

the optimal habitat conditions, taking into account the density of observations 

in environmental-space. By contrast, the area-adjusted median algorithm (Ma) 

assumes that, for all ENFA factors, the optimal habitat is the median of the 

habitat use to habitat availability ratio (Braunisch et al. 2008). The median + 

extremum algorithm (Me) assumes that the optimal habitat suitability on the 

marginality factor is either the lowest or highest value, whereas on all 

specialisation factors it is the median (as in the M algorithm; Braunisch et al. 

2008). Finally, the area-adjusted median + extremum algorithm (Mae) is a 

combination of the Ma and Me algorithms. For all ENFA algorithms, across 

the five fish taxa, three factors were retained based on ‘MacArthurs broken-

stick’ rule (MacArthur 1957) that was explained in Chapter 2, section 2.4.4. 
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MAXENT uses the maximum entropy method for modelling species 

geographic distributions with presence-only data (Phillips et al. 2006). The 

MAXENT is a general-purpose, machine-learning method with a simple and 

precise mathematical formulation, and it has a number of aspects that make it 

well-suited for species distribution modelling (see Phillips et al. 2006). Models 

were trained using default settings; convergence threshold (0.00001), 

maximum iterations (1000), auto features, regularisation multiplier (r = 1) and 

background points (10 000). 

3.2.5 Model testing 

Using the occurrence datasets that were set aside for model testing, model 

performance was evaluated using two methods: the threshold-independent 

AUC of the ROC (Receiver Operating Characteristic; Fielding & Bell 1997) 

and threshold-dependent kappa statistic (Cohen 1960). 

The ROC plots sensitivity (the fraction of occurrence records that are classified 

as presence) against 1 - specificity (the portion of absences points that are 

classified as absent) for all possible thresholds. A curve that maximises 

sensitivity for low values of the false-positive fraction is considered a good 

model and is quantified by calculating the AUC. An AUC value of 0.5 implies 

the model predicts species occurrence no better than random and a value of 1.0 

implies perfect prediction (Fielding & Bell 1997). While this technique was 

initially applied to presence/absence methods, it can be adapted to evaluate 

presence-only models (Wiley et al. 2003, Phillips et al. 2006). Plotting 

sensitivity against a random sample of background locations is sufficient to 

define an ROC curve (Wiley et al. 2003, Phillips et al. 2006). The ROC plot 
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method has an advantage over confusion matrix-derived evaluation methods 

(for examples see; Fielding & Bell 1997) because it does not require the 

arbitrary selection of a threshold above which a prediction is considered 

positive; a procedure that can bias evaluations (Fielding & Bell 1997). A 1:1 

ratio of presence/background point was used (i.e. if there were 237 

occurrences, then 237 background points were randomly generated). For each 

individual taxon, these background points were randomly generated along 

transects where no fish taxa were observed. The AUC derived from the ROC 

plot of this study can be interpreted as a measure of the ability of the algorithm 

to discriminate between a suitable environmental condition and a random 

analysis pixel (background), rather than between suitable and unsuitable 

conditions, as an AUC developed with measured absences is interpreted 

(Phillips et al. 2006). The ROC curves and the AUC values were calculated in 

DIVA-GIS. 

Although the continuous map of the probability of presence produced by 

distribution models is itself useful for many conservation applications (e.g. 

Wilson et al. 2005) it is often converted into a presence/absence map. Despite 

threshold-independent measures of model performance being widely preferred, 

such as the AUC, the reliability of these methods has recently been questioned 

(Lobo et al. 2008). Therefore, to enable a thorough evaluation of the models 

the threshold-dependent kappa statistic was also selected (Cohen 1960). The 

kappa statistic assesses the extent to which a model predicts occurrence at a 

rate higher than expected by chance. The results vary between 1.0 for perfect 

agreement and 0 for random agreement. The kappa-maximised threshold was 

run in DIVA-GIS. This threshold method calculates kappa scores for 100 
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threshold values (in 0.01 increments) and the one which provides maximum 

kappa is accepted as the threshold (Thuiller 2003). When multiple thresholds 

had the same kappa value, the mean threshold value was selected.  

To compare the influence of the modelling algorithm on model performance 

(as measured by AUC and kappa), a permutational multivariate analysis of 

variance (PERMANOVA) was used (Anderson 2001). PERMANOVA was run 

with 999 permutations of the residuals under a reduced model. Post-hoc 

pairwise tests (t-tests) were conducted, again using 9999 permutations. All 

analyses were tested at α = 0.05. PERMANOVA was conducted using 

PERMANOVA+ add-on in the statistical package PRIMER-E (Clarke & 

Gorley 2006, Anderson et al. 2008).  

3.2.6 Influence of species’ spatial range and 
environmental niches on modelling 
performance 

When examining model outputs of marine species distribution much of the 

emphasis is on the influence of explanatory variables (e.g. Moore et al. 2009). 

However, the influence of species’ spatial range and environmental niches is 

less often considered in the marine environment. To address this imbalance a 

series of orthogonal contrasts were carried out on the modelled distributions of 

habitat suitability generated in this study. The rationale of these analyses was 

the assumption that the modelled distributions of habitat suitability of taxa with 

wider spatial range and environmental niches would be characterised by lower 

performance (in terms of kappa and AUC) relative to taxa that exhibit a 

narrower range and niche. The spatial range and environmental niches were 

determined using three measures: area of occupancy (AOO), marginality and 
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tolerance. AOO is an estimate of geographic-range size that is actually 

occupied by a taxon (Gaston 1996). It was calculated by summing the number 

of 2.5 × 2.5 m grid cells where a fish taxon was observed. Marginality is the 

difference between the species optimum habitat and the mean environmental 

conditions in the study area. This is therefore representative of the species’ 

ecological niche position. Tolerance describes the species’ niche breadth by 

comparing the variability in the environmental conditions where the species 

occurs to the range of environmental conditions in the study area. These 

characteristics were calculated using BIOMAPPER (Hirzel et al. 2007).  

Six sets of Helmert contrasts (Field 2000) were used to test: (1) the influence of 

marginality on mean kappa; (2) the influence of marginality on mean AUC; (3) 

the influence of tolerance on mean kappa; (4) influence of tolerance on mean 

AUC; (5) the influence of AOO on mean kappa; and (6) the influence of AOO 

on mean AUC. For the design of these contrasts the five fish taxa were used to 

provide the measures of AOO, marginality and tolerance, while model 

diagnostics of the ten algorithms were used to provide measures of mean kappa 

and mean AUC. Using a series of t-tests, orthogonal contrasts provide an 

efficient way to test specific hypothesis while maintaining strict control over 

Type I error rate by reducing the amount of pairwise comparisons when 

compared to post-hoc testing (Field 2000). Homogeneity of variance in the 

dependent variables was assessed using Levene’s test and normal distribution 

was assessed using Kolmogorov-Smirnov test (Field 2000). 
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3.2.7 The most important variables for 
characterisation of suitable habitat for 
demersal fishes 

Using the best model run (i.e. MAXENT) for each fish taxon, a jackknife 

analysis of the regularised gain (a statistic that measures how well a variable 

distinguishes localities where taxa occur from the total area under study) with 

the training occurrence data was used. The variables with regularised gains ≥ 

0.1 were considered important. To assess how the variation in these variables 

influenced suitable habitat, response curves (log contribution to prediction) 

were used. These curves show how prediction of suitable habitat changes as 

each seafloor variable is varied, keeping the remaining seven variables at their 

average sample value. Predictor variable values with positive log contribution 

(i.e. > 0) indicate higher habitat suitability.  

3.3 Results 

3.3.1 Comparison of model performances 

Generally, MAXENT was found to be the best performing model (Figure 6). 

Subtle differences between each fish taxon, however, were observed (Figure 

6). Pairwise comparisons based on kappa and AUC indicated that MAXENT 

was significantly better than all other algorithms for N. tetricus and P. 

psittaculus (pairwise tests: P < 0.05). Similarly, pairwise comparisons based on 

kappa and AUC indicated that MAXENT was significantly better than all other 

algorithms with the exception of DOMAIN for Caesioperca spp. and C. 

nigripes; where MAXENT was better but not significantly so. Results for P. 

multiradiata were less defined. Pairwise comparisons based on AUC indicated 

that MAXENT was significantly better than ENFA-Min, but was not 

significantly different to all other algorithms (Figure 6h). Pairwise results from 
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kappa indicated, however, that MAXENT was significantly better than all other 

algorithms with exception to ENFA-GM (Figure 6g). In addition to differences 

in model performance, considerable variation in the spatial distributions 

projected by the different algorithms was observed (Figure 7 shows examples 

of the highest and lowest performing algorithms for the five demersal fishes 

investigated). 
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Figure 6. Model performance for Caesioperca spp.: a) kappa; pseudo-F9,81 = 
8.95, P < 0.001, b) AUC; pseudo-F9,81 = 13.93, P < 0.001, Cheilodactylus 
nigripes: c) kappa; pseudo-F9,81 = 7.64, P < 0.001, d) AUC; pseudo-F9,81 = 
4.57, P < 0.001, Notolabrus tetricus: e) kappa; pseudo-F9,81 = 6.85, P < 0.001, 
f) AUC; pseudo-F9,81 = 6.07, P < 0.001, Pempheris multiradiata: g) kappa; 
pseudo-F9,81 = 6.63, P < 0.001, h) AUC; pseudo-F9,81 = 3.41, P < 0.001, and 
Pseudolabrus psittaculus: i) kappa; pseudo-F9,81 = 9.74, P < 0.001, j) AUC; 
pseudo-F9,81 = 17.10, P < 0.001 produced with BIOCLIM, DOMAIN, ENFA-
M, ENFA-Ma, ENFA-Mae, ENFA-Me, ENFA-GM, ENFA-HM, ENFA-Min 
and MAXENT. Kappa is shown in the left column represented by the light grey 
bars, while AUC of ROC is presented in the right column by the dark grey 
bars. Error bars indicate Standard Deviation.  
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Figure 7. Examples of the predicted habitat suitability for the lowest (middle 
column) and highest (right column) performing models. Left column shows 
spatial arrangement of occurrences for each taxon. 
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3.3.2 Influence of species spatial range and 
environmental niches on modelling 
performance 

Helmert contrasts indicated that as marginality increased, there was a trend of 

increasing mean kappa and AUC (Table 8). There were no discernable trends 

when examining the influence of niche breadth (tolerance) or species spatial 

range (AOO) on mean AUC and mean kappa (Table 8).  

Table 8. Summary of Helmert contrasts used in determining influence of 
species range and environmental niches on model performance. Significant 
contrasts are shown in bold. 

Contrast Description Contrast t-statistic 
(45 df) 

Significance 
(1-tailed) 

Marginality influence on mean kappa 1 6.298 <0.001 
 2 4.320 <0.001 
 3 1.292 0.105 
 4 5.818 <0.001 
Marginality influence on mean AUC 1 2.844 0.004 
 2 1.174 0.123 
 3 0.455 0.326 
 4 6.630 <0.001 
Tolerance influence on mean kappa 1 1.041 0.152 
 2 -1.579 0.061 
 3 -9.209 <0.001 
 4 -2.333 0.012 
Tolerance influence on mean AUC 1 3.944 <0.001 
 2 0.322 0.375 
 3 -5.969 <0.001 
 4 -1.530 0.067 
AOO influence on mean kappa 1 1.041 0.152 
 2 -1.579 0.061 
 3 -9.209 <0.001 
 4 -2.333 0.012 
AOO influence on mean AUC 1 3.994 <0.001 
 2 0.322 0.375 
 3 -5.969 <0.001 
 4 -1.530 0.065 
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3.3.3 The most important variables for 
characterisation of suitable habitat for 
demersal fishes 

Variable importance varied for the five fish taxa based on the best performing 

MAXENT model run (Table 9). It is acknowledged that the fitted response 

curves (log contribution to prediction; Figure 8) are graphical descriptions of 

how the different variables influence habitat suitability and do not describe the 

environmental limits of the taxa (Ysebaert et al. 2002). 

For Caesioperca spp., the areas surrounding sheer drop-offs along the south-

eastern region of the study area were predicted to be the most suitable habitat 

(Figure 7b). Areas of fragmented highly suitable habitat were also predicted 

throughout the deeper (> 30 m) regions of the study area (Figure 7b). The 

jackknife test of variable importance showed that bathymetry, Euclidean 

distance to nearest reef, HSI-b and rugosity were important for determining 

suitable habitat for Caesioperca spp. (Table 9). Response curves of these 

variables indicated that suitable habitat for Caesioperca spp. decreased with 

the increase in distance from reef (Figure 8d). Similar patterns were observed 

for bathymetry and HSI-b variables (Figures 8a and 8e). The response curves 

showed that as these values increased so did habitat suitability of Caesioperca 

spp. However, the curves showed this trend up to a certain point (~ 32 m depth 

and ~ 80 HSI-b) and beyond that the habitat suitability plateaued. Variation in 

rugosity, however, had only a small influence on suitability; with high values 

(~ 2) being most important (Figure 8h).  

Regions of highest habitat suitability for Cheilodactylus nigripes were 

predicted to be the deeper (> 30 m) fringing reefs at the base of the drop-offs 
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(Figure 7d). The most important seafloor variables for defining suitable habitat 

were rugosity, Euclidean distance to nearest reef, HSI-b and maximum 

curvature (Table 9). Examination of the response curves for these variables 

showed that areas delineated by depths around 40 m, close to reef, with low 

rugosity, intermediate maximum curvature and high HSI-b values were the 

most suitable habitats for this species (Figure 8).  

The shallow (< 20 m) highly complex reef structures in the eastern region of 

the study site were found to have the highest habitat suitability for Notolabrus 

tetricus (Figure 7f). Some fragmented highly suitable habitat was also 

predicted throughout the deeper (> 50 m) regions in the north-west of the study 

site. Among seafloor variables, Euclidean distance to nearest reef, rugosity, 

bathymetry, HSI-b, BPI and maximum curvature were selected as important 

variables for defining habitat suitability for this species (Table 9). Examination 

of the response curves for these variables highlighted regions that were 

delineated by close proximity to reef, high rugosity, high HSI-b, either highly 

positive or negative BPI (i.e. peaks or troughs), intermediate maximum 

curvature, around 20 m water depth was the most suitable habitat for N. 

tetricus (Figure 8).  

The predicted distribution of suitable habitat for Pempheris multiradiata 

showed similar patterns to that of N. tetricus, albeit more widespread in the 

deeper regions of the study area (Figure 7h). Several seafloor variables defined 

the predicted distribution of suitable habitat for P. multiradiata; Euclidean 

distance to nearest reef, maximum curvature, rugosity, HSI-b, northness and 

eastness (Table 9). Response curves of these variables indicated that, in 



68 | P a g e  
 

general, south-east facing (i.e. northness values ~ - 0.8 and eastness values ~ 

0.8) regions close to reef, with low rugosity, moderate maximum curvature and 

high HSI-b values were the best indicators for suitable habitat for this species 

(Figure 8).  

Pseudolabrus psittaculus was predicted by MAXENT to have similar patterns 

to C. nigripes, with highly suitable habitat being confined to the deeper regions 

of the study area (Figure 7j). The jackknife test of variable importance showed 

that bathymetry, rugosity, HSI-b, maximum curvature, Euclidean distance to 

nearest reef and BPI were the primary determinants in characterising the 

habitat suitability for this species (Table 9). Response curves of these seafloor 

variables indicated that the highest habitat suitability for P. psittaculus was 

observed with the increase in depth (Figure 8a). However, the curves showed 

this trend up to certain point (~ 31 m depth) and beyond that the habitat 

suitability plateaued until 73 m after-which there was a sharp decline. The 

response curve for rugosity (Figure 8h) showed a similar trend to that of 

Caesioperca spp. with only a slight increase in habitat suitability of P. 

psittaculus around high rugosity values (~ 2). Lower values of HSI-b were 

associated with most suitable habitat for P. psittaculus (Figure 8e). Increased 

maximum curvature decreased habitat suitability (Figure 8f). Euclidean 

distance to nearest reef showed the same trend as all other taxa, with 

diminishing suitability increasing with distance from reef (Figure 8d). Albeit 

more pronounced than for N. tetricus, BPI showed a decrease in suitable 

habitat around BPI values of 0 for P. psittaculus (Figure 8b). 
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Table 9. Relative variable importance as measured by regularised gain for each 
fish taxon. Variables contributing most to predictions are shown in bold. 

Taxon Variable Regularised gain 
Caesioperca spp. Bathymetry 0.16 
 BPI 0.06 
 Eastness 0.05 
 Euclidean distance to nearest reef 0.13 
 HSI-b 0.13 
 Max. curvature 0.08 
 Northness 0.03 
 Rugosity 0.11 
Cheilodactylus nigripes Bathymetry 0.06 
 BPI 0.09 
 Eastness 0.10 
 Euclidean distance to nearest reef 0.27 
 HSI-b 0.13 
 Max. curvature 0.10 
 Northness 0.05 
 Rugosity 0.39 
Notolabrus tetricus  Bathymetry 0.39 
 BPI 0.15 
 Eastness 0.03 
 Euclidean distance to nearest reef 1.00 
 HSI-b 0.29 
 Max. curvature 0.11 
 Northness 0.03 
 Rugosity 0.89 
Pempheris multiradiata Bathymetry 0.05 
 BPI 0.02 
 Eastness 0.10 
 Euclidean distance to nearest reef 0.35 
 HSI-b 0.14 
 Max. curvature 0.19 
 Northness 0.13 
 Rugosity 0.17 
Pseudolabrus psittaculus  Bathymetry 0.24 
 BPI 0.11 
 Eastness 0.05 
 Euclidean distance to nearest reef 0.14 
 HSI-b 0.17 
 Max. curvature 0.15 
 Northness 0.03 
 Rugosity 0.17 
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Figure 8. Response curves (log contribution to prediction) for each predictor 
variable as generated by the best MAXENT model run for the five demersal 
fish taxa investigated. Lines indicate difference taxa; Caesioperca spp. solid 
black, Cheilodactylus nigripes solid light grey, Notolabrus tetricus large black 
dashed, Pempheris multiradiata small light grey dashed and Pseudolabrus 
psittaculus small black dashed. 

a) 

d) 
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3.4 Discussion 

3.4.1 Predictive performance 

This study compared 10 presence-only algorithms to predict the habitat 

suitability of five demersal fish taxa in Discovery Bay, Australia. To the best of 

my knowledge this is the first time that towed-video-derived fish occurrence 

and detailed spatially-explicit seafloor datasets have been used to compare 

presence-only modelling approaches. Overall, it was found that the range in 

kappa and AUC values from the models were comparable with other marine 

and terrestrial presence-only modelling studies (e.g. Elith et al. 2006, Tsoar et 

al. 2007, Tittensor et al. 2009). Statistically significant differences in values of 

kappa and AUC were observed between the modelling algorithms. Generally, 

MAXENT significantly outperformed the other algorithms, similar with 

findings from previous studies. Tittensor et al. (2009) used MAXENT and 

ENFA GM to predict global habitat suitability of stony corals on seamounts 

and found that MAXENT consistently outperformed ENFA GM. Similarly, 

Elith et al. (2006), who compared sixteen modelling approaches using a variety 

of terrestrial flora and fauna from six different regions of the world, found that 

MAXENT significantly outperformed BIOCLIM and DOMAIN. No 

significant difference between the more recently developed ENFA Ma, ENFA 

Mae, ENFA Me approaches and the original ENFA M algorithm was also 

found. This is in contrast to findings by Braunisch et al. (2008), who found that 

the more recent ENFA algorithms provided better models of habitat suitability 

for large forest grouse (Tetrao urogallus) than the original ENFA M algorithm.  
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There are numerous reasons for the observed differences in predictive model 

performances in this study. Differences could potentially be due to the 

modelling algorithms ability to fit the complex species-environment 

relationships. Pearce and Ferrier (2000) suggested that algorithms used to fit 

species distribution models can be ranked in accordance to their ‘function 

complexity’. The models examined in this study differed considerably from 

each other in their complexity. The BIOCLIM is conceptually the simplest 

model tested, assuming a rectilinear environmental envelope around 

occurrence data in environmental-space. Consequently, only the outer records 

along each environmental variable are used to define the boundaries of the 

ecological niche and it cannot deal with correlations or interactions between 

the environmental variables (Hijmans et al. 2005). The DOMAIN differs from 

BIOCLIM in its ability to cope with discontinuity of the species occurrence 

datasets in environmental-space (Hijmans et al. 2005). Its main restraint is that, 

for each potential site, only a single record (the nearest neighbour in 

environmental-space) is used to determine suitable habitat. The original ENFA-

related algorithms (geometric mean, harmonic mean, median and minimum 

distance) take into account the distribution of all the occurrence records in 

environmental-space and create elliptic envelopes that are consistent with the 

assumption of unimodal responses to environmental gradients. The more recent 

ENFA algorithms (area-adjusted median, median + extremum, area-adjusted 

median + extremum) are slightly more complex than the original ENFA 

algorithms, taking into account marginality and specialisation (see Braunisch et 

al. 2008). Because of MAXENTs ability to iteratively evaluate and improve the 

rules used for generating predictions, it is the most complex algorithm among 
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the methods examined in this study. The results indicated that the 10 modelling 

algorithms can be generalised into three groups based on their kappa and AUC 

scores: (1) MAXENT consistently performed best; (2) ENFA GM, ENFA HM 

and DOMAIN had intermediate levels of performance, and (3) BIOCLIM, 

ENFA M, ENFA Min and the more recent ENFA algorithms performed lowest. 

Consequently, with the exception of the relatively poor performance obtained 

for the more recent ENFA algorithms, the results are consistent with the 

hypothesis that increasing model complexity may provide a better fit for 

complex species-environment relationships, resulting in better model 

performance.  

3.4.2 Influence of species range and environmental 
niches on modelling performance 

Niche position (expressed by marginality) was the only descriptor to be 

significantly associated with model performance (i.e. kappa). Higher 

performing models were obtained based on occurrence data from fish taxa with 

niche positions that were greatly different from the mean conditions of the 

study area. However, no discernable association was achieved from the other 

environmental niche (i.e. tolerance) and species range (i.e. AOO) descriptors 

examined. In relation to marginality, this association with model performance 

(kappa) coincides with observations made by Hernandez et al. (2006), who 

found that predictive performance of organisms with clearly definable 

environmental niches (i.e. high marginality) can be modelled with higher 

performance than those of more generalist species (i.e. low marginality). The 

lack of association between model performance and the remaining descriptors 

contrasts with previous terrestrial studies. Tsoar et al. (2007) found that 
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tolerance had a negative effect on predictive performance as measured by 

kappa. A possible explanation for these discrepancies between these findings 

and previous studies could relate to the spatial scale at which the variables are 

generated and fitted. Brotons et al. (2004) proposed that species inhabiting a 

wide range of habitats in a certain area might not be limited by any of the 

measured variables at the scale at which the models are fitted and may 

therefore perform lower. Because this study was primarily concerned with 

assessing model performance between algorithms, the same variables were 

used across all taxa and were generated at the finest possible spatial scale (3 x 

3 cell analysis window). It is acknowledged that there is no universally correct 

spatial scale at which to describe species-habitat relationships (Wiens 1989) 

and that better models may be achieved if variables were generated at multiple 

spatial scales as noted in Chapter 2.  

3.4.3 The most important variables for 
characterisation of suitable habitat for 
demersal fishes 

The integration of occurrence data from towed-video and MBES-derived 

seafloor variables in a presence-only modelling framework were useful for 

explaining the characteristics that define suitable habitat for the five demersal 

fish taxa investigated. It was found that MAXENT models consistently 

delineated areas of suitable habitat to be regions of seafloor that relate to the 

known ecology of these focal taxa. For example, adult Caesioperca spp. is 

known to school on top of deeper (> 30 m) rocky outcrops, feeding on 

plankton, while juveniles remain close to the rocky substrata (Edgar 2000, 

Williams & Bax 2001). Its distribution of suitable habitat was defined with 

seafloor variables that express these deeper reef drop-offs. Similarly, 
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Cheilodactylus nigripes is a common species that inhabits reefs, over a range 

of depths, feeding on benthic invertebrates (Cappo 1980, Cappo 1995). Highly 

suitable habitat identified as the less complex intermediate to deep reef 

systems, which are known to be densely covered in a variety of sponges, 

ascidians and bryozoans (Ierodiaconou et al. 2007a). Pempheris multiradiata 

are generally observed near over-hangs and caves near the edges of reefs 

(Annese & Kingsford 2005). Consistent with this, the MAXENT model 

highlighted areas of highly suitable habitat were the protected south-east facing 

reefs (the predominant swell direction is from the south-west) with low 

seafloor complexity. 

The MAXENT models highlighted an important difference in the ecological 

requirements of two wrasse species (Labridae). While both Notolabrus tetricus 

and Pseudolabrus psittaculus are benthic carnivores that consume a variety of 

mobile and sessile invertebrates (Barrett 1995, Shepherd & Clarkson 2001, 

Edgar et al. 2004), differences in seafloor variables that influence their habitat 

suitability were observed. N. tetricus juveniles and small females are 

commonly observed in kelp and seagrass dominated shallow waters (< 20 m), 

while larger fish inhabit deeper invertebrate dominated rocky reefs (Edgar et al. 

2004). Males of this species are fiercely territorial and maintain a harem of 

females over home ranges of 400-775 m2 (Barrett 1995). By contrast, P. 

psittaculus were commonly observed in pairs, or small schools, in and around 

sessile invertebrate and thallose-red-algal-dominated reef systems that are 

greater than 30 m. Examining the predicted habitat suitability and response 

curves of these two species indicated that highly suitable habitat for N. tetricus 

was predicted as present in shallow areas of reef with high seafloor complexity 
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(i.e. high rugosity and either positive or negative BPI); whilst P. psittaculus 

was predicted to be mainly confined to the less complex deeper reefs.  

Many studies have identified the influence of seafloor characteristics on the 

distributions of suitable habitat for demersal fishes because they are either 

direct or indirect proxies that represent important physiological or ecological 

limitations; including the availability of territory, food, shelter or the existence 

of predation or competition (Choat & Ayling 1987, Friedlander & Parrish 

1998, Priede & Merrett 1998, García-Charton et al. 2004, Moore et al. 2009, 

Chatfield et al. 2010). This study, however, highlights the importance of 

having detailed spatially-explicit (i.e. full-coverage) seafloor data rather than 

the point-located descriptors relied on by earlier studies (Friedlander & Parrish 

1998, Babcock et al. 1999, Westera et al. 2003, Willis & Anderson 2003). 

These spatially-continuous measures of seafloor data reflect subtle, but 

important, differences in habitat suitability which provide end users (e.g. 

management agencies or research scientists) with accurate and detailed 

spatially-explicit information about demersal fishes. Consequently, the 

spatially-explicit model predictions generated in this study should be viewed as 

a framework upon which targeted empirical research can be based. 

3.5 Conclusions 

The comparison of 10 algorithms provided a comprehensive evaluation of 

which presence-only techniques are most suited to modelling suitable habitat of 

demersal fishes. Generally, MAXENT produced the best performing models 

for the taxa and study area examined. It was also found that fish with clearly 

definable environmental niches can be modelled with higher performance than 
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those of more generalist species. The continued use of these presence-only 

models for mobile demersal fish taxa in marine environment, particularly 

MAXENT, is encouraged. The MAXENT models clearly demonstrated the 

value of remotely-sensed occurrence and detailed, spatially-explicit, seafloor 

datasets in determining the importance of variables that influence suitable 

habitat of demersal fishes. While the models are still only describing 

associations and not necessarily demonstrating causal relationships, it is their 

ability to develop realistic response curves and to provide spatially-explicit 

predictions of suitable habitat that makes these approaches a useful 

management tool.  



78 | P a g e  
 

 
 

Chapter 4 
 
 

Comparing towed and baited 
underwater video techniques 
for assessing temperate 
marine fishes4 

                                                 
4 The research in this chapter is in review as Monk J, Ierodiaconou D, Versace VL, Rattray A, 
Stagnitti F, Harvey ES (In Review) Comparing towed and baited underwater video techniques 
for assessing temperate marine fishes. Estuarine, Coastal and Shelf Science 
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4.1 Introduction 

When non-destructively surveying fish it is important to consider the technique 

that provides the most accurate results for the question posed. This is because 

the choice of technique has the potential to influence the assemblages recorded 

by the survey method (Rotherham et al. 2007, Watson et al. 2010). Such 

examples include the inability of fish traps to effectively sample herbivorous 

species (Munro 1974) or fish attraction to SCUBA divers (Cole 1994, Cole et 

al. 2007). Traditionally, scientists have critically examined the biases and 

limitations of different non-destructive fish surveying techniques with the over-

arching goal of identifying at least one technique that can provide the most 

accurate description of the focal fish assemblage (Lincoln-Smith 1989, Trenkel 

et al. 2004, Morrison & Carbines 2006). These studies have focused their 

comparisons on a single habitat (e.g. sediment dominated habitat; Morrison & 

Carbines 2006) or do not explicitly account for the influence of habitat 

structure on survey method (e.g. Willis et al. 2000). The physical structure of 

the habitat (e.g. high profile reef systems vs. low profile seagrass habitat) has 

the potential to influence the results obtained from non-destructive fish survey 

techniques. Consequently, it is important to determine how differences in 

habitat structure influences non-destructive fish survey methods. 

There are many different non-destructive surveying techniques available to 

assess fish populations. SCUBA diver-derived Underwater Visual Census 

(UVC) has been the most widely used fish surveying technique (Bell 1983, 

Pyle 2000, Samoilys & Carlos 2000, Harvey et al. 2002, Cole et al. 2007). This 

technique, however, is limited by depth (usually < 20 m because of 
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decompression limits), has issues surrounding intra/inter-observer bias 

(Thompson & Mapstone 1997, Harvey et al. 2001a, b), can over or 

underestimate the area surveyed (Kulbicki 1998, Harvey et al. 2004) and is 

limited by the small number of dives that can be achieved in a day (Harvey et 

al. 2002). More recently, the increase in affordability of underwater video 

technology has seen more studies beginning to use video-based survey methods 

to assess fish populations (for detailed reviews see; Shortis et al. 2009, Murphy 

& Jenkins 2010). Williams et al. (2010b), for instance, described two stereo 

camera systems (one still and the other video) to survey untrawlable regions of 

the seafloor (i.e. areas of seafloor that have complex reef systems). They found 

that both towed systems provided accurate quantification of fish occurrences 

for these regions (Williams et al. 2010b). Similar to UVC, underwater video 

provides information on fish assemblages as well as the associated benthic 

biological habitats. Carbines and Cole (2009) highlighted the effectiveness of a 

drift video method in estimating densities of demersal fish and making 

qualitative measures of benthic habitat. This makes it a particularly attractive 

tool for assessing fish species whilst negating some of the issues associated 

with SCUBA-based diver surveys.  

Whilst different underwater video techniques are available (Murphy & Jenkins 

2010), there are two in particular that are becoming popular for assessing fish 

assemblages and associated habitats. Baited-video systems are popular and 

widely noted as particularly effective at recording a diverse assemblage of fish 

species (Willis & Babcock 2000, Harvey et al. 2007, Malcolm et al. 2007, 

Langlois et al. 2010, Watson et al. 2010). Like other video-based platforms, 

baited-video are not limited by depth and provide permanent records (Harvey 
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& Shortis 1996, Harvey et al. 2002). However, static nature of deployments, 

dietary preferences of fish species and issues associated with bait attraction 

(and intra/inter-specific competition around the bait) have the potential to 

influence the species assemblages observed by these baited camera systems 

(Willis & Babcock 2000). 

Towed/drift video surveys are another video technique that are increasingly 

being used to assess fish populations (Assis et al. 2007, Williams et al. 2010b). 

This is because towed-video systems are not restricted by depth, provide a 

permanent record for further analysis and, when coupled with acoustic 

positioning and GPS, offer precisely georeferenced frames allowing accurate 

integration with seafloor structure information across habitat transition zones 

(Spencer et al. 2005). However, towed-video systems are limited by their field 

of view, the need for high water clarity and are in constant motion (i.e. moving 

up, down and side-to-side). In shallow (i.e. < 30 m) temperate marine 

ecosystems, they are also often ‘flown’ over highly complex reef systems (e.g. 

Williams et al. 2010b) covered in dense canopy forming macroalgae. These 

issues combined have the potential to underestimate species’ occurrences 

because fish may simply be hiding under or camouflaged within the canopy 

and reef.  

Towed/drift and baited video have been compared elsewhere. For example, 

Morrison and Carbines (2006) compared a drift video system to eight other fish 

survey methods (including baited-video) to estimate the relative abundance of 

Pagrus auratus (snapper). They found that drift video detected a wider range 

of snapper sizes compared to baited systems. Their study however, focused on 
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a sheltered harbor that exhibited relatively low seafloor complexity (i.e. 

predominately sediment dominated habitat). Since towed-video systems 

potentially underestimate the occurrence of fish simply because they may be 

hiding under or camouflaged within the canopy and reef, how drift video 

compares to baited methods across varying benthic biological habitat types 

(especially over more complex seafloor regions) remains largely untested. 

Consequently, the objective of this study is to provide a comparison of the type 

of information that can be extracted from baited and towed-video techniques in 

terms of fish assemblages, functional groups (i.e. pelagic carnivores, epibenthic 

carnivore/omnivore and herbivore) and degrees of observability (conspicuous 

or cryptic natured) across six different benthic biological habitats. Knowledge 

of this type will be of benefit to scientists and managers of marine resources 

when considering what survey method best suits their aspirations.  

4.2 Materials and methods 

4.2.1 Study site  

The study site encompassed a 25.7 km2 area that was situated offshore from the 

city of Warrnambool (-38° 43′ S, 142° 43′ E), south-eastern Australia (Figure 

9). The site ranged in depth from 12 to 50 m (based on MBES data coverage 

for the study area; relative to lowest astronomical tide datum). Canopy-forming 

kelp, Ecklonia radiata and Phyllospora comosa, dominated the large shallow 

limestone reef structure (Hopkins Bank) that was situated across the northern 

section of the study site. A large sandy area in the north-western region of the 

study site also supported a sparse cover of seagrass (Zosteraceae sp.), while the 

deeper regions consisted of a mixture of low (< 1 m) profile limestone reef and 

sandy sediments with assemblages dominated by mixed red algae, sponges, 
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ascidians, bryozoans and gorgonian corals (Ierodiaconou et al. 2007b). These 

assemblages can be qualitatively classified into six broad habitat types, 

including: seagrass, mixed brown algae, mixed red and brown algae, mixed red 

algae, mixed red algae and invertebrates, and no visible macro-biota (Table 

10). Density thresholds and details about how these habitats are defined can be 

found in Ierodiaconou et al. (2007b). 

Figure 9. Location of the Warrnambool study area on the south-western coast 
of Victoria, south-eastern Australia. Shading indicates water depth. Black lines 
indicate towed-video transects captured in 2005/2006. Grey lines show towed-
video transects captured in 2009. White dots indicate baited-video 
deployments. Red dotted line delineates the southerly extent of the Hopkins 
Bank. 

Hopkins Bank 
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Table 10. Description of factors used in multivariate statistical analysis. 
Factor Description 
Habitat  MB Mixed brown dominated algae 

community (predominantly canopy 
forming kelp)  

 MBR Mixed red and brown dominated 
algae community  

 MR Mixed red dominated algae 
community  

 MRI Mixed red algae and invertebrate 
dominated community  

 NVB No visible macro-biota 
 SG Seagrass (Zosteraceae) dominated 

community  
Method  Baited-video Baited remote underwater video 

system 
 Towed-video VideoRay towed-video system 
   
Functional 
Group 

Pelagic carnivore Edgar (2000) and Fishbase were used 
to assign functional groups 

 Benthic 
carnivore/omnivore 

 

 Herbivore  
Observability Conspicuous  Edgar (2000) and Fishbase were used 

to assign observability 
 Cryptic  

4.2.2 Fish surveying techniques 

4.2.2.1 Baited-video deployments  

The sampling strategy for the baited-video deployments was a randomly 

stratified design (Moore et al. 2010). This sampling strategy was used to ensure 

good spatial coverage and adequate representation across the major structuring 

seafloor gradients (e.g. depth) and predicted habitat types. Stratified 

deployments were allocated utilising the MBES bathymetry and predicted 

biotic habitat maps available for the study area (Ierodiaconou et al. 2007b). Ten 

replicate deployments were preformed across three multibeam sonar derived 

variables; (1) bathymetry was grouped into 10 m depth strata (i.e. 10-19, 20-29, 

30-39 and 40-49 m), (2) rugosity was reclassified into high, medium and low 

strata and (3) Benthic Position Index (BPI) was classed into trough, flat and 
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peak. For predicted biotic habitat, 10 replicate deployments were performed in 

each of the six habitats. To ensure adequate spatial coverage 59 additional 

deployments were randomly allocated throughout the deeper (i.e. >20 m) 

regions of the study site. Fish were surveyed from February to March 2009, 

with a total of 219, 60-min baited-video deployments precisely positioned with 

a differential GPS to ensure accurate spatial location (Figure 9; Table 11). 

However, 17 deployments were excluded from the statistical analysis because 

they failed to record clearly (i.e. landed on their back or smothered in kelp). 

The baited-video comprised two Sony HC 15E video cameras in underwater 

housings mounted 0.7 m apart on a base bar inwardly converged at 8 degrees to 

gain an optimised field of view with visibility of ~ 7 m distance (water clarity 

dependent; see Harvey & Shortis 1996). Up to six baited-video systems were 

deployed at survey localities at any one time to increase sampling efficiency. 

Each baited-video system was deployed by boat and left to film on the seafloor 

for a period of 1 h (excluding time lost in lowering the units over the side). At 

least 36 min of filming time is recommended to obtain measures for the 

majority of fish species, though 60 min is advisable to obtain measures of 

numerous targeted fish species (Watson 2006). Each camera system was 

equipped with a synchronising diode and ~ 800 grams of crushed Sardinops 

sagax (common pilchard) in a closed plastic-coated wire mesh basket, 

suspended 1.2 m in front of the two cameras. Adjacent replicate deployments 

were separated by at least 250 m to avoid overlap of bait plumes and reduce the 

likelihood of fish moving between sites within the sampling period (Cappo et 

al. 2001). Deployments were carried out between 08:00 and 18:00 to minimise 

the effects of diurnal changes in fish behaviour (Willis et al. 2006). 



86 | P a g e  
 

Table 11. Summary of survey time for each video method across benthic 
biological habitats (defined in Table 10). 

4.2.2.2 Towed-video transects 

Twenty nine towed-video transects were used to provide fish occurrence data. 

The 29 transects were selected to encompass the main physical gradients across 

the study area (e.g. depth, topographic variation, exposure). Additional 

transects were undertaken throughout the shallow heterogeneous regions of the 

site (i.e. across the Hopkins Bank) to ensure adequate representation of habitats 

throughout the study site. The 29 transects covered 68 linear km (~ 30.7 h) of 

the study area (Figure 9; Table 11). Over eight days (December-March 2005/06 

and February-March 2009) a micro remotely-operated vehicle (VideoRay Pro 

3) was towed along the 29 transects at 0.5-1 ms-1 (1-2 knots). Details on the 

towed system are outlined in Chapter 2, section 2.4.3. 

4.2.3 Video analysis 

4.2.3.1 Baited-video analysis 

All video footage was captured using Adobe Premiere Elements 4 in an AVI 

(Audio Video Interleaved) format. The right hand video of each stereo-pair was 

interrogated to obtain the maximum number of fish belonging to each species 

present in the field of view of the cameras at one time (MaxN; Cappo et al. 

2001, Cappo et al. 2004). For deployments where fish occurred in high 

densities MaxN counts are considered conservative. Fish were identified to the 

Habitat Baited-video survey time (h) Towed-video survey time (h) 
 2009 2009 2005/06 
MB 35 0.8 1.5 
MBR 25 1.9 1.9 
MR 17 0.4 1.5 
MRI 102 0.5 18 
SG 11 0.8 1.5 
NVB 12 0.8 1.1 
Overall 202 5.2 25.5 
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lowest possible taxonomic resolution and the same experienced observer was 

used to analyse both video datasets to minimise potential confound effects. A 

reference library containing video clips of the fish taxa was taken and quality 

checked by fish identification experts from Museum Victoria and Australian 

Marine Ecology. A qualitative assessment of the dominant biological habitat 

(i.e. seagrass, mixed brown algae, mixed red and brown algae, mixed red algae, 

mixed red algae and invertebrates, and no visible macro-biota; Table 10) was 

also completed at each deployment. For each deployment 60 min of tape was 

analysed. These observations were obtained using the program EventMeasure 

(SeaGIS Pty Ltd). EventMeasure is a program used for logging and reporting 

events occurring in digital video imagery. It is specifically designed to allow 

fast, efficient analysis of movie sequences when recording biological 

information and animal behaviour in underwater movie sequences. This 

software enabled the management of data collected from the field operations 

and video, to record the timing of events and capture reference images of the 

seafloor and fish in the field of view. 

4.2.3.2 Towed-video analysis 

Similar to the baited-video systems, all towed-video footage was captured 

using Adobe Premiere Elements 4 in an AVI format and interrogated to 

identify fish to the lowest possible taxonomic resolution. Video where the 

bottom type could not be distinguished was excluded from the analysis. As 

with the baited-video a qualitative assessment of the dominant biological 

habitat was also completed at each occurrence locality (Table 10). The exact 

spatial position (± 5 m accuracy) of each occurrence locality was then 

determined by matching the time stamp of the video with the corresponding 
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survey positional data. Details on the capture of the survey positional data (i.e. 

dGPS track) is outline in Chapter 2, section 2.4.3  

4.2.4  Multivariate statistical analysis 

To test the differences observed in terms of fish assemblages, functional 

groupings and observability obtained from baited and towed-video across six 

benthic habitats, data were each subjected to a two-factorial permutational 

multivariate analysis of variance (PERMANOVA; Anderson 2001). The 

PERMANOVA approach was selected as there is no requirement for data to 

conform to parametric assumptions of normality, homogeneity of variance, 

independence and balanced designs. The latter being most important in this 

study as the number of data points from each method varied considerably 

across habitat types. Species within the fish assemblage were allocated against 

one of three broad functional groups based on Edgar (2000) and Fishbase 

(www.fishbase.org). These groups included pelagic carnivores, epibenthic 

carnivore/omnivores or herbivores. Similarly, each species was grouped into 

one of two observability classes (conspicuous or cryptic) also based on Edgar 

(2000) and Fishbase (www.fishbase.org). The data were considered to 

represent a two-way design of samples within benthic biological habitat (6 

fixed factors; habitat) and within video survey method (2 fixed factors; 

method). Datasets were transformed into presence/absence to enable 

comparison between the MaxN obtained from the baited systems and the 

occurrence derived from the towed video. Using these presence/absence 

transformed datasets, PERMANOVAs and pairwise comparisons were all run 

with 9999 permutations of the residuals under a reduced model and all analyses 

were tested at α = 0.05 based on a Bray-Curtis similarity measure. To visualise 
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the relationship between habitat and species, functional group or observability 

measure, a distance-based Principle Coordinates Analysis (PCO) was used for 

each video method. For these PCOs, averages of observations for each of the 

six habitat classes were used to reduce the inherent non-metricity within the 

datasets (i.e. a high degree of 0s or 100s within the distance matrices). The 

strongest correlated vectors (i.e. > 0.7), based on Spearman correlations, were 

overlaid on the PCO ordination to highlight which species and groupings 

provided the greatest contribution to the differences observed between the six 

habitats. As the overlaid vectors represent raw Spearman correlations 

calculated for each biological entity (i.e. species, functional group or 

observability measure) with the original PCO axes, excluding all other 

biological entities, it must only be used as a visual guide (Anderson et al. 

2008). All analyses were conducted using the PERMANOVA+ add-on in the 

statistical package PRIMER-E (Plymouth Marine Laboratory, UK; Clarke & 

Gorley 2006, Anderson et al. 2008). 

To justify pooling of the towed video datasets from the two sampling periods 

(i.e. 2005/06 and 2009) and to determine if the time discrepancy would 

confound the comparison between the towed and baited-video, the 2005/06 

towed video dataset was sub-sampled to cover the same area as the 2009 

footage. A single factor PERMANOVA (factor = time) was applied to 

measures of assemblages, functional groupings and observability. Since no 

significant difference was observed for any of the three analyses (all P(perm) > 

0.05), it was concluded that the two datasets could be pooled and the time 

discrepancy between the towed and baited surveys would not confound the 

comparisons made between techniques. 



90 | P a g e  
 

4.3 Results 

4.3.1 Assemblage description 

A total of 71 species belonging to 43 families were observed at the study site 

(Appendix 2). Baited-video systems recorded a greater number of species and 

families (65 and 43, respectively) compared to the towed-video system (43 and 

31, respectively; Table 3). Five species were only recorded by the towed-video 

system (7% of all species observed) with most of these being cryptic in nature 

(e.g. Aracana aurita; Shaw’s cowfish, Phyllopteryx taeniolatus; weedy 

seadragon). Twenty-eight species were only recorded by baited-video (39% of 

all species observed). Many of these species are predatory or highly territorial 

(e.g. Notorynchus cepedianus; broadnose sevengill shark, Arripis spp; 

Australian salmon, Seriola lalandi; yellow-tail kingfish). Families that 

comprised the greatest number of species were similar for both survey 

techniques, but differed in the number of species within each family (Table 

12). The most common families for both techniques were Monacanthidae 

followed by Labridae and Cheilodactylidae. 
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Table 12. Description of fish assemblages recorded by baited and towed-video 
for the study site. 

 Baited video Towed video Total 
Total # individuals 9,781 3,113 12,839 
Total # species 65 43 71 
Total # families 43 31 43 
# spp unique to 
technique 

28 5  

Top four families (# 
spp) 

Monacanthidae 
(9) 

Monacanthidae 
(6) 

Monacanthidae 
(12) 

 Labridae (5) Labridae (5) Labridae (5) 
 Cheilodactylidae 

(5) 
Cheilodactylidae 
(4) 

Cheilodactylidae 
(5) 

 Carangidae (5) Urolophidae (2) Carangidae (5) 

4.3.2 Differences in observed assemblage 
composition  

The PERMANOVA revealed that there were highly significant differences in 

observed fish assemblages between methods and across benthic biological 

habitats (Table 13a). However, the differences in the fish assemblages between 

methods were not consistent amongst benthic biological habitats 

(PERMANOVA interaction; Table 13a). Pairwise comparisons on the 

interaction term between methods and benthic biological habitats indicated that 

the differences in fish assemblages recorded by each method were highly 

significant for most habitats (P(perm) < 0.001). However, seagrass habitat 

showed a weaker difference between methods; albeit still significant (P(perm) 

< 0.05).  

The PCO on each video method was used to visualise the habitat-averaged 

multivariate fish assemblage data (Figure 10). A total of 88.2% of the variation 

in the fish assemblage recorded by baited-video was explained by the first two 

PCO axes (Figure 10). In comparison, the first two axes of the PCO based on 

the fish assemblages recorded by towed-video explained a total of 92.2% of the 
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variation (Figure 10). Structuring between benthic biological habitats was 

observed for both video methods along PCO axes (Figure 10). 

Examination of the species vectors for the baited-video dataset revealed that a 

total of 11 species were correlated with PCO1, eight were correlated with 

PCO2, and four were correlated with both axes (Figure 10; Table 14a). 

Neosebastes scorpaenoides (common gurnard perch), Meuschenia scaber 

(velvet leatherjacket), Pseudolabrus psittaculus (rosy wrasse) and 

Upeneichthys vlamingii (southern goatfish) were all strongly negatively 

correlated with both axes and coincided with PCO ordination of mixed red 

algae and invertebrate dominated habitats (i.e. MR and MRI; Table 10). 

Similarly, while Trachurus declivis (common jack mackerel), Pseudophycis 

barbata (bearded rock-cod), Nemadactylus valenciennesi (queen snapper), 

Pagrus auratus (snapper), Nelusetta ayraudi (chinaman leatherjacket) and an 

unidentified monacanthid species were only negatively correlated with PCO1, 

these species were still associated with the PCO ordination of mixed red algae 

and invertebrate dominated habitats. Further, Caesioperca spp. (perch), 

Parequula melbournensis (silverbelly), M. flavolineata (yellow stripe 

leatherjacket), Mustelus antarcticus (gummy shark), Cheilodactylus nigripes 

(magpie morwong), Pempheris multiradiata (common bullseye) and N. 

douglasii (blue morwong) were only negatively correlated with PCO2, and 

again associated with the PCO ordination of mixed red algae and invertebrate 

dominated habitats. By contrast, Heterodontus portusjacksoni (port jackson 

shark) was only positively correlated with PCO1, which reflected the PCO 

ordination of seagrass (SG; Table 10). Similarly, Enoplosus armatus (old 

wife), M. hippocrepis (horse-shoe leatherjacket), Parma victoriae (scalyfin), 
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Odax cyanomelas (herring cale) and Notolabrus fucicola (purple wrasse) were 

all only positively correlated with PCO1, which coincided with the PCO 

ordination of mixed brown algae dominated habitat. 

Examination of the species vectors for the towed-video dataset indicated that 

only nine species were correlated with either PCO axes (Figure 10; Table 14a). 

Of these, three were correlated only with PCO1 and six only with PCO2. 

Caesioperca spp., P. psittaculus, M. scaber, P. melbournensis were all 

negatively correlated with PCO1 only, which coincided with the PCO 

ordination of deeper less structurally complex habitats (i.e. MR, MRI and NB; 

Table 10). Further, Aplodactylius acrtidens (dusky morwong), O. cyanomelas 

and Dinolestes lewini (pike) were only correlated with PCO2, which reflected 

the PCO ordination of mixed brown and red algae dominated habitats (i.e. MB 

and MBR; Table 10). By contrast, Urolophus paucimaculatus (sparsely-spotted 

stingaree) and N. tetricus (blue-throat wrasse) were only positively correlated 

with PCO1, which related to the PCO ordination of seagrass (SG; Table 10). 
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Figure 10. Principal Coordinates Analysis (PCO) of the fish assemblages recorded by baited (left column) and towed-video (right column). Data 
points are averaged and arranged by benthic biological habitats (MB= mixed brown algae; MBR= mixed red and brown algae; MR= mixed red 
algae; MRI= mixed red algae and invertebrates; SG= Seagrass; NVB= no visible macro-biota; habitat descriptions in Table 10). Equilibrium 
circle and vectors (Spearman correlations) are overlaid for the first two PCO axes. The length and direction of the vectors represent the strength 
and association of the relationship and depict the species that contributed most (i.e. >0.7) to the ordination graph.
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4.3.3 Differences in observed functional groupings  

PERMANOVA identified highly significant differences in functional 

groupings of fishes between techniques and across benthic biological habitats 

(Table 13b). However, the differences in fish assemblages based on functional 

groupings between methods were not consistent amongst benthic biological 

habitats (PERMANOVA interaction; Table 13b). Pairwise comparisons on the 

interaction term found highly significant differences between methods for most 

habitats (P(perm) < 0.001). In contrast to the species assemblage analysis, 

seagrass habitat showed no significant difference in functional group 

assemblages between methods (P(perm) > 0.05) and no visible macro-biota 

exhibited a weak difference between methods, albeit significant (P(perm) < 

0.05). 

Similar to the assemblage dataset, the functional group observations were 

subjected to habitat-averaging to reduce the non-metricity within the dataset. A 

total of 100% of the variation in the functional groupings of the fish was 

explained by the first two PCO axes for the baited-video dataset (Figure 11). In 

contrast, the first two axes of the PCO based on the functional groupings 

recorded by towed-video explained a total of 99.2% of the variation (Figure 

11).  

The functional group vectors for the baited-video dataset revealed that 

herbivores and pelagic carnivores were both only positively correlated with 

PCO1 (Table 14b). By contrast, epibenthic carnivores/omnivores were only 

positively correlated with PCO2 (Table 14b). Visual interpretation of these 

vectors suggested that herbivorous fish were associated with mixed brown 
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algae dominated habitat (MB; Table 10; Figure 11). However, epibenthic 

carnivores/omnivores and pelagic carnivores showed no clear association with 

any of the six habitats (Figure 11). 

Interrogation of the functional group vectors for the towed-video dataset 

revealed that pelagic carnivores were only negatively correlated with PCO1, 

which reflected the PCO ordination of less structurally complex habitats (i.e. 

MRI, NB; Figure 11; Table 14b). Similarly, herbivores were only negatively 

correlated with PCO2, which coincided with the PCO ordination of mixed 

brown algae dominated habitat (i.e. MB, MBR; Figure 11; Table 10; Table 

14b). In contrast to both of these functional groups, epibenthic 

carnivores/omnivores were only positively correlated with PCO1 and reflected 

seagrass habitat in the PCO ordination (SG; Figure 11; Table 10; Table 14b).  
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Figure 11. Principal Coordinates Analysis (PCO) of the functional groups recorded by baited (left column) and towed-video (right column). 
Data points are averaged and arranged by benthic biological habitats. (MB= mixed brown algae; MBR= mixed red and brown algae; MR= mixed 
red algae; MRI= mixed red algae and invertebrates; SG= Seagrass; NVB= no visible macro-biota; habitat descriptions in Table 10). Equilibrium 
circle and vectors (Spearman correlations) are overlaid for the first two PCO axes. The length and direction of the vectors represent the strength 
and association of the relationship and depict the species that contributed most (i.e. >0.7) to the ordination
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4.3.4 Differences in observed observability 

PERMANOVA suggested that there were highly significant differences 

between video techniques in their ability to detect species that reflect the two 

measures of observability and across benthic biological habitats (Table 13c). 

However, the differences in the assemblages of fish based on observability 

amongst methods were also not consistent amongst benthic biological habitats 

(PERMANOVA interaction; Table 13c). Pairwise comparisons on the 

interaction term between methods and benthic biological habitats indicated that 

baited and towed-video recorded highly significantly differences in 

observability measures across most habitats (P(perm) < 0.001). However, no 

visible macro-biota showed a weaker difference (albeit significant; P(perm) < 

0.05), while seagrass showed no significant difference (P(perm) > 0.05) 

between methods in terms of observability. 

Like the previous PCOs, habitat-averaged observations were used to develop 

the observability PCO. This PCO was used to visualise the differences between 

methods for habitat-averaged multivariate observability data (Figure 12). For 

both methods, 100% of the variation in the fish observability was explained by 

the first two PCO axes (Figure 12).  

Examination of the observability vectors for the baited-video dataset revealed 

that cryptic species were positively correlated with only PCO1. By contrast, 

conspicuous species showed only negative correlations with PCO2 (Figure 12). 

Neither baited-video derived observability measures reflected the PCO 

ordination clustered by habitats. 
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In contrast to the baited-video, the PCO based on the towed-video-derived 

dataset showed that conspicuous species were only negatively correlated with 

PCO1 and reflected the PCO ordination of less structurally complex habitats 

(i.e. NB, MRI, MR; Figure 12; Table 10; Table 14c). By contrast, the cryptic 

species vector showed only positive correlation with PCO1, which to some 

extent coincided with the PCO ordination of more structurally complex habitats 

(i.e. MB, MBR; Figure 12; Table 10; Table 14c). 
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Figure 12. Principal Coordinates Analysis (PCO) of the measures of observability recorded by baited (left column) and towed-video (right 
column). Data points are averaged and arranged by benthic biological habitats. (MB= mixed brown algae; MBR= mixed red and brown algae; 
MR= mixed red algae; MRI= mixed red algae and invertebrates; SG= Seagrass; NVB= no visible macro-biota; habitat descriptions in Table 10). 
Equilibrium circle and vectors (Spearman correlations) are overlaid for the first two PCO axes. The length and direction of the vectors represent 
the strength and association of the relationship and depict the species that contributed most (i.e. >0.7) to the ordination graph. 
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Table 13. Summary of PERMANOVA results based on Euclidean distances 
for (a) fish assemblages, (b) functional groups and (c) observability in response 
to factors method (towed v. baited video), benthic biological habitat (habitat 
descriptions in Table 10) and their interactions. 

a) 
Source df SS MS Pseudo-F P(perm) 
Method 1 49093 49093 15.485 0.001 
Habitat 5 214240 42849 13.516 0.001 
Method x Habitat 5 75191 15038 4.7435 0.001 
Residual 1102 3493700 3170 
Total 1113 4204900 
b)     
Source df SS MS Pseudo-F P(perm) 
Method 1 54701 54701 26.005 0.001 
Habitat 5 62921 12584 5.9825 0.001 
Method x Habitat 5 20838 4168 1.9813 0.026 
Residual 1102 2318100 2104   
Total 1113 2788700    
c)      
Source df SS MS Pseudo-F P(perm) 
Method 1 54843 54843 28.941 0.001 
Habitat 5 57441 11488 6.0624 0.001 
Method x Habitat 5 33644 6729 3.5508 0.003 
Residual 1102 2088300 1895   
Total 1113 2549600    
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Table 14. Summary of most influential (i.e. > 0.7) vectors based on Spearman 
correlations with the first two PCO axes based on each video method for: (a) 
species, (b) functional groups and (c) measures of observability. 

a) Species PCO1 PCO2 
Baited-video Monacanthidae -0.94 -0.52 

Trachurus declivis -0.89 -0.09 
Neosebastes scorpaenoides -0.88 -0.70 
Pseudophycis barbata -0.88 -0.27 
Nemadactylus valenciennesi -0.85 -0.34 
Meuschenia scaber -0.84 -0.78 
Pseudoabrus psittaculus -0.84 -0.78 
Upeneichthys vlamingii -0.84 -0.78 
Pagrus auratus -0.83 -0.09 
Nelusetta ayraudi -0.78 -0.07 
Caesioperca spp. -0.60 -0.94 
Parequula. melbournensis -0.55 -0.84 
M. flavolineata -0.54 -0.78 
Mustelus antarcticus -0.54 -0.78 
Cheilodactylus nigripes -0.39 -0.88 
Pempheris multiradiata -0.39 -0.88 
N. douglasii -0.15 -0.76 
Heterodontus portusjacksoni 0.26 0.94 
Enoplosus armatus 0.78 -0.03 
M. hippocrepis 0.78 -0.03 
Parma victoriae 0.78 -0.03 
Odax cyanomelas 0.82 -0.15 
N. fucicola 0.85 0.03 

Towed-video Caesioperca spp. -0.99 0.20 
P. psittaculus -0.94 0.39 
M. scaber -0.85 0.44 
P. melbournensis -0.81 0.03 
Aplodactylius arctidens 0.29 -0.93 
O. cyanomelas 0.33 -0.94 
Dinolestes lewini 0.33 -0.76 
Urolophus paucimaculatus 0.70 0.39 

  Notolabrus tetricus 0.94 -0.14 
b) Functional Group PCO1 PCO2 
Baited-video Pelagic carnivore 0.70 -0.49 

Epibenthic carnivore/omnivore 0.13 0.75 
Herbivore 0.94 0.39 

Towed-video Pelagic carnivore -0.89 0.14 
Epibenthic carnivore/omnivore 0.71 0.37 
Herbivore 0.14 -0.99 

c) Observability PCO1 PCO2 
Baited-video  Conspicuous 0.12 -0.93  

Cryptic 0.94 0.27 
Towed-video Conspicuous -0.99 0.03 
  Cryptic 0.94 -0.26 
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4.4 Discussion 

This chapter assessed the differences between towed and baited-video methods 

to record fish species assemblages, functional groups and measures of 

observability across six benthic biological habitats contained in a 25.7 km2 

area. Generally, it was found that across structurally complex benthic 

biological habitats (i.e. macroalgal-dominated, high-profile reef habitats; such 

as the mixed brown habitat) significant differences between baited and towed 

video were observed. However, as the habitat became less complex (e.g. 

seagrass and no visible macro-biota) both techniques appeared to provide 

similar assessments of fish in terms of assemblage, functional groups and 

measures of observability. This is an important difference when compared with 

previous studies. For example, Morrison and Carbines (2006) described a drift 

underwater video system (DUV) which was used to survey demersal fish 

assemblages at night over a sediment-dominated habitat. They found that while 

the DUV under estimated small (< 5 cm) P. auratus its ability to estimate fish 

biomass compared favourably with other fish surveying techniques (including 

baited-video). Results in the present study support this idea that, over 

sediment-dominated habitats, towed-video provides comparable estimates to 

baited-video for fishes in terms of species assemblage, functional groups and 

measures of observability. However, as the seafloor became more structurally 

complex baited-video systems recorded significantly more species, from a 

broader range of functional groups and including both conspicuous and cryptic 

species. Since shallow-water temperate marine ecosystems exhibit a high 

degree of heterogeneity in benthic habitats (Kenny et al. 2003, Brown et al. 

2005, Jordan et al. 2005, Ierodiaconou et al. 2011), understanding how 
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differing habitat types influence fish survey methods is important. While 

numerous studies exist that quantify the differences between fish survey 

methods (Willis et al. 2000, Cappo et al. 2004, Harvey et al. 2004, Morrison & 

Carbines 2006, Colton & Swearer 2010, Watson et al. 2010), this study 

represents one of the first to explicitly assess how two video methods differ in 

the detection of temperate marine fishes in relation to variation in seafloor 

habitat. 

The use of bait is well documented to increase the number of species; 

particularly pelagic or epibenthic carnivores (e.g. Pseudocaranx dentex; white 

trevally, P. auratus) in the vicinity of the camera deployment (Willis & 

Babcock 2000, Willis et al. 2000). In this study the baited cameras recorded 

more pelagic and epibenthic carnivorous/omnivorous species (e.g. P. auratus, 

P. dentex, S. lalandi, Seriolella brama; warehou) compared to the towed-video 

system. These species are typically piscivores, invertebrate carnivores and 

generalist omnivores. In contrast, these species were infrequently observed, or 

not recorded at all by the unbaited towed-video system. The presence of these 

carnivores around the bait may also reflect the reduced observations of cryptic 

or prey species recorded by the baited-video compared to the towed video (e.g. 

A. ornata, T. novaezelandiae; yellow-tail scad).  

Guarding and territorial behaviour around the bait is another potential factor 

influencing observations (Godø et al. 1997). On numerous occasions, males of 

N. tetricus and M. freycineti (six-spine leatherjacket) were observed 

aggressively guarding the bait against other males of the same species and, in 

some cases, other species. This aggressive behaviour from these territorial 
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species could potentially lead to underestimates of species and densities on 

deployments where bait guarding is occurring.  

Bait odour plume effects in shallow marine ecosystems with high wave and 

current energy are complex and difficult to quantify (Colton & Swearer 2010). 

This bait odour plume could potentially lead to the erroneous observation of 

fish species in sub-optimal habitat. For instance, if a baited system is set on 

reefs that contain a matrix of sand within the area of attraction of the bait it 

may attract species that prefer sand. Likewise, for a baited system set on sand 

where there is reef present within the plume area, it is likely to attract fish that 

prefer reef. On several occasions fish species that are predominantly associated 

with reef (e.g. Scopis aequipinnis; sea sweep) were observed over bare sand 

regions on the baited cameras. This suggests that attraction from nearby reef 

systems may have been present for some of the deployments. This is not 

necessarily an issue if the research is primarily concerned with quantifying 

assemblages at a study site or between locations. However, since these baited-

video datasets are now being used in spatially-explicit, fine-scale predictions of 

habitat suitability of fishes (e.g. Moore et al. 2009, Moore et al. 2010), 

erroneously locating fish in a habitat that the species is not normally associated 

with due to attraction (or repulsion) could potentially, and significantly, bias 

any model output. One potential way to avoid this confounding is to use MBES 

or predicted habitat maps (e.g. Ierodiaconou et al. 2007b) to ensure baited 

systems are set within habitats that are homogenous within the bait plume area. 

However, it is difficult to quantify bait plumes (Colton & Swearer 2010), and 

by selecting only homogenous regions heterogeneous habitats are inherently 

not surveyed, which may support unique species assemblages. Additionally, if 



106 | P a g e  
 

the study site is extremely heterogeneous or has very strong currents (thus 

causing large bait plumes) it may not be possible to survey much of study site. 

This has the potential to have considerable effects on habitat suitability models. 

By contrast, the application a towed system poses considerable advantages as it 

does not rely on bait. 

Fewer species (particularly pelagic carnivores) were recorded by the towed-

video system. Many of these species were highly mobile (e.g. S. lalandi), thus 

may exhibit avoidance towards boat engine noise (generated whilst towing) or 

towards the tow camera system itself. After reviewing some of the baited-video 

footage where the deployment vessel is heard approaching to retrieve the unit 

after the 60-min deployment, it was noticed that on several occasions the large 

numbers of P. auratus that were observed feeding on the bait rapidly departed 

the field of view. This avoidance behaviour towards boat noise could 

potentially bias the towed-video dataset and has been reported by other 

researchers (e.g. Sarà et al. 2007, Popper & Hastings 2009). Sarà et al. (2007) 

found that agonistic behaviour of Thunnus thynnus (bluefin tuna) was more 

evident when exposed to sounds from outboard motors. Further, Stoner et al. 

(2008) found that the presence of underwater camera systems (e.g. towed-video 

system or remotely operated vehicles) could potentially bias the fish species 

observed; albeit difficult to quantify as most avoidance (or attraction) occurs 

outside the field of view. Although not negating the issue of camera avoidance, 

a possible way to circumvent issues surrounding boat engine noise is through 

the application of Autonomous Underwater Vehicles (AUV). With the 

improved access and affordability of AUVs, scientists are beginning to explore 

their use in seafloor habitat mapping (Williams et al. 2010c). With the addition 
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of forward mounted stereo cameras, AUVs may provide an efficient and 

relatively silent alternative to towed/drift video systems and warrant further 

investigation for fish assessments.  

The tow-speed is another factor that potentially influences the species 

assemblage recorded by the towed-camera system. In this study, tows were 

conducted at 0.5-1.0 ms-1. To the best of our knowledge, no quantitative 

research has been conducted into the influence of tow speed on the fish 

assemblage recorded using underwater video. However, research into the 

influence of trawl speed in net surveys has highlighted that different speeds 

affect the abundance, size classes and species assemblage caught (Dahm et al. 

2002, Jones et al. 2008). Similarly, swimming speed of SCUBA divers 

conducting visual census alters the species assemblage recorded (Lincoln-

Smith 1989). In fact, the surveying speed for assessing epibenthic species 

depends largely upon seafloor characteristics (i.e. the presence of canopy 

forming macroalgae species, refuge, overhangs and crevices), which require 

adequate time for a careful search (Lincoln-Smith 1989). Alternatively, for the 

assessment of pelagic species the survey speed depends less on the seafloor 

characteristics, and more on the ecological and behavioural features of the 

focal species (e.g. schooling, bright colouration; Lincoln-Smith 1989). One of 

the issues with both video techniques is their inability to search complex 

seafloor habitat to the same degree that SCUBA divers can (Watson et al. 

2005, Stobart et al. 2007). For this reason, in the absence of comparative data 

for different tow speeds, towed surveys should be maintained at speeds similar 

to the swimming speed of SCUBA divers (i.e. < 0.3 ms-1) to mitigate issues 

surrounding tow speed. Additionally, towed surveys should also be adjusted to 
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account for the mobility of the target species and seafloor characteristics of the 

study site (e.g. sediment or complex reef).  

When undertaking the analysis of datasets obtained from inherently different 

video techniques there are numerous considerations that need to be confronted 

to achieve as realistic a comparison as possible. It is accepted that the 

collection of the two datasets 3 years apart is not ideal. However, the difference 

between data collection periods does not overtly affect the comparison between 

the two datasets for two reasons; (1) there was no significant difference 

between the subsampled 2005/06 and 2009 towed-video datasets and (2) many 

of the species recorded were highly territorial and maintain strict territories 

year round (e.g. labrids and monacanthids). Barrett (1995) studied the short- 

and long-term patterns to six temperate marine fishes (from the labrid and 

monacanthid families) and found that these species appeared to be permanent 

residents of the reef. While presence of migratory fishes (such as P. auratus) 

may vary throughout the seasons (due to spawning migrations), both datasets 

were collected in summer months (December-March). Previous summer fish 

assessments to the north-western end of the present study site have found that 

there is very little inter-annual variation in fish species richness from 2004-

2006 (Crozier et al. 2007). Further, the additional towed-video data collected 

during the 2009 sampling season did not record as many migratory species as 

the baited-video deployments in the same area of the study site (i.e. the 

Hopkins Bank).  

It is also acknowledged that differences between the two techniques may be a 

result of the imbalances in surveying effort at the study site. Approximately 10-
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times less towed-video was collect compared to the baited systems. However, 

the discrepancies in survey effort were not considered a serious confounding 

influence. This is because the deployment times used were required for each 

method to adequately cover the known habitat types contained within the study 

area. For example, research using baited-video typically utilises multiple units, 

that are deployed concurrently, and left to record for 60 min so that the greatest 

number of individuals and species are recorded (Watson et al. 2005, Harvey et 

al. 2007, Stobart et al. 2007). Similarly, the design and deployment of the 

towed-video surveys used in the study have also been utilised in benthic habitat 

characterisation initiatives and fish assemblage assessments at other locations 

(e.g. Rattray et al. 2009, Ierodiaconou et al. 2011, Chapters 2 and 3). 

Consequently, the comparison shown here reflects the species compositions 

recorded by these two video techniques when used in popular fashion. 

When making the choice between video techniques it is also important to 

consider the time associated in deploying the two systems and analysing the 

resultant video footage. While the two video techniques record slightly 

different species compositions, functional groups and measures of 

observability, the time associated in deploying the systems and analysing the 

footage differed substantially. The principal advantage of towed-video systems 

is that it can be deployed for extended periods due to the various options 

provided by remote power supply and data storage, and offer additional 

advantages in that the information can be interpreted in ‘real-time’ enabling 

operators to modify sampling strategies based on the information received. By 

contrast, the principal advantage of the baited systems is increased sampling 

efficiency through the ability to achieve simultaneous deployments over large 



110 | P a g e  
 

areas; thus reducing survey time. In the present study it took eight days to 

collect 30 h of towed-video, while the 219 baited-video deployments were 

achieved in 10 days. However, it took considerably longer to download and 

analyse the baited-video (i.e. towed-video took 30 h to interrogate, while 101 h 

was needed to view the baited-video). The results of the study are therefore 

particularly important for researchers needing to decide on a video-surveying 

technique, as these types of data are relatively expensive to collect and analyse.  

4.5 Conclusions 

There is a suite of challenges that need to be acknowledged when attempting to 

quantify the species assemblages, functional groups and measures of 

observability recorded by towed and baited video. This chapter has made 

inroads to enhancing our understanding of these two video systems. The results 

of this study are important as affordable video survey techniques are being 

increasingly used for fish census. Despite the inherent issues with each method, 

both video techniques have the advantages such as minimising inter/intra-

observer variability and are not depth limited (i.e. no SCUBA decompression 

limits). Although not analysed here, the baited-video systems also have the 

added benefit of obtaining accurate measures of fish length (Harvey et al. 

2002). Alternatively, while the towed-video used in this study was unable to 

provide length measurements, it is its ability to capture transitional habitat 

zones that may be of interest to researchers (particularly those interested in 

spatially-explicit predictions of habitat suitability). This is especially pertinent 

considering that towed-video is fast becoming a popular technique in many 

habitat mapping initiatives worldwide (Grizzle et al. 2007, Ierodiaconou et al. 

2007b, Holmes et al. 2008, Lefebvre et al. 2009). As baited and towed video 
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techniques sampled very different assemblages, functional groups and degrees 

of observability (albeit variable across habitat types), coupled with the 

considerable difference in time associated with collecting and analysing video 

footage, careful consideration should be given to the goals of the research. If a 

single fish surveying technique is to be used, then the research here suggests 

the baited-video technique will provide measures for a far greater number of 

species (particularly pelagic and epibenthic carnivores) across a broader range 

of benthic biological habitats. However, the two video techniques provide 

complimentary information by recording different fish assemblages when 

compared to each technique used in isolation, especially over structurally 

complex habitats.  
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Chapter 5 
 
 

Are we predicting the actual 
or apparent distribution of 
temperate marine fishes?5 

                                                 
5 The research in this chapter is in review as Monk J, Ierodiaconou D, Harvey ES, Rattray A, 
Versace VL (In Review) Are we predicting the actual or apparent distribution of temperate 
marine fishes? PLoS ONE  
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5.1 Introduction 

Worldwide, human activity is having adverse impacts on the structure and 

function of marine ecosystems (Jackson et al. 2001). In response, many 

initiatives are underway to identify, prioritise and ultimately preserve areas of 

importance (Ward et al. 1999, Jones 2004, Jordan et al. 2005, Zacharias & 

Gregr 2005, Aswani & Lauer 2006, Harris & Whiteway 2009). An initial step 

in this process often involves delineating the distribution of species, 

assemblages or habitats (Guisan & Zimmermann 2000). This allows areas that 

support high diversity to be given the highest priority, which is particularly 

important when the maintenance and enhancement of biodiversity is the central 

goal of a management initiative (Myers et al. 2000). To support such strategies, 

management agencies are increasingly seeking the provision of accurate, 

quantitative and spatially-explicit information on patterns of species 

distributions at scales relevant to the assessment and management process 

(Vanderklift & Ward 2000, Harris & Whiteway 2009). 

In this context, predictive modelling of species’ distribution has become a 

fundamental tool (Guisan & Zimmermann 2000). These models have provided 

a popular analytical framework for relating geo-located observations of 

occurrence to environmental variables that contribute to a species distribution 

(Guisan & Zimmermann 2000). This relationship is based on statistically, or 

theoretically derived response functions that characterise the environmental 

conditions associated with the ecological niche of a given organism (Austin 

2007). Presence/absence models are frequently used to predict species 

distributions, but there is a common problem related to the uncertainty in 
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determining absences (Hirzel et al. 2001), especially where the species is 

difficult to survey and does not appear to occupy all available suitable habitats 

(Gibson et al. 2007). In such cases, researchers have two options; (1) model 

presence/pseudo-absence (or background) data (e.g. Engler et al. 2004), or (2) 

model presence-only data (e.g. Elith et al. 2006). The use of a random sample 

from the background population to supply pseudo-absences may have 

unexpected consequences on results when true absences are expected (Wisz & 

Guisan 2009). In fact, it may be argued that on a theoretical basis at least, a 

presence-only approach may be preferable because there is no requirement for 

truly exhaustive and exclusive absences; a requirement that is not met by most 

biodiversity data.  

Often such models are based on researchers’ own survey occurrence datasets 

resulting in predictions that are reasonable depictions of species distributions. 

While there are many different methods available to provide occurrence 

datasets for fishes in the marine environment, baited and towed systems are 

increasingly being used as they overcome many issues associated with 

traditional survey methods (for a review see Murphy & Jenkins 2010). Moore 

et al. (2009), for example, modelled temperate marine fish distributions based 

on baited-video-derived occurrence and fine-scale MBES datasets using 

classification trees and generalised additive models. While the value of these 

data is not questioned, the representativeness of these occurrence localities is 

dependent on which survey technique is used. For example, Chapter 4 

compared baited and towed-video systems, and found that a greater number of 

individuals and species were recorded by the baited system; especially 

carnivorous fishes. While research suggests that deploying a combination of 
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survey methods used concurrently provides a better assessment of fish 

assemblages (e.g. Colton & Swearer 2010), the logistical or financial 

constraints of most studies limit fish biodiversity assessments to only one 

method. Consequently, there has been limited research to demonstrate how 

models would differ by using a different data collection technique or modelling 

approaches in the marine environment. Understanding the influence of survey 

method used to collect occurrence datasets for modelling of fine-scale habitat 

suitability is especially crucial. If an observation of zero individuals has arisen 

because it was present, but not detected then any statistical inference based on 

such data are likely to be incomplete or wrong (Wintle et al. 2005). Consider a 

fish species that was observed in 10% of a study region. This fish may actually 

occur throughout the entire area, but was only detected 10% of the time (p = 

0.1). Alternatively it may also be found in only 10% of the area and has been 

detected perfectly (p = 1).  

Consequently, the aim of this chapter is to highlight the potential differences in 

model predictions brought about from the choice of survey method used to 

collect fish occurrence datasets. In this chapter towed and baited underwater 

video methods are used to provide occurrence datasets for nine temperate 

marine fishes. Further, given the potential for presence/absence and presence-

only models to produce considerably different predictions of habitat suitability, 

three commonly applied SDMs (i.e. generalised linear models, generalised 

additive models and maximum entropy) are applied to the baited and towed-

video occurrences datasets for the nine fish taxa. This will provide a 

comparison of survey method as well as determine how these datasets 

potentially influence both types of SDMs (i.e. presence/absence and presence-
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only). With increasing application and emphasis of SDMs in the marine 

environment, this chapter will bring into focus the need for careful 

interpretation of predictions.  

5.2 Materials and methods 

5.2.1 Study site  

The research presented in this chapter was undertaken at the Hopkins study 

location as detailed in Chapter 4 section 4.2.1. 

5.2.2 Fish surveying techniques 

The fish occurrences used in this chapter are derived from the same demersal 

fish surveying programs (i.e. baited and towed video) outlined in Chapter 4 

section 4.2.2. From these two datasets the most common nine demersal fish 

between the two video survey techniques were selected (Table 15; Appendix 

2). These nine fish taxa spanned a gradient of life history characteristics from 

cryptic site affiliated to cosmopolitan conspicuous taxa (Table 15) 



117 | P a g e  
 

Table 15. Summary of the number of occurrences used in model building for each taxon based on the two video methods. Life history 
characteristics assigned from Edgar (2000) and Fishbase. 
Taxon Common name Video method Presence Pseudo-absence Life history characteristics 

Caesioperca spp.  Perch Baited 115 87 Conspicuous, cosmopolitan 
preferring reef-crests, large 
schools, maximum length of 
300mm 

 Towed 431 431 

Cheilodactylus nigripes  Magpie morwong Baited 38 164 Conspicuous, cosmopolitan 
preferring open habitats (e.g. 
invertebrate dominated), 
pairs to small loose schools, 
maximum length of 410mm 

Towed 32 32 

Meuschenia scaber  Velvet leatherjacket Baited 106 96 Cryptic, cosmopolitan 
preferring open habitats (e.g. 
invertebrate dominated), 
single to small loose schools, 
maximum length of 310mm 

Towed 37 37 

Notolabrus tetricus  Blue-throat wrasse Baited 114 88 Cryptic, limited on or near 
kelp dominated habitats, 
small loose schools, 
maximum length of 500mm 

Towed 50 50 

Odax cyanomelas  Herring cale Baited 39 163 Cryptic, limited to kelp 
dominated habitats, single to 
pairs, maximum length of 
510mm 

 Towed 56 56 
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Table 15. continued…      
Parequula melbournensis  Silver belly Baited 29 173 Cryptic, limited to open 

sandy habitats, small schools, 
maximum length of 500mm 

  Towed 15 15 

Pempheris multiradiata  Common bullseye Baited 15 187 Cryptic, limited to in or 
around caves, single to pairs, 
maximum length of 220mm 

 
  Towed 154 154 

    
Pseudolabrus psittaculus Rosy wrasse Baited 61 141 Cryptic, cosmopolitan 

preferring open habitats (e.g. 
invertebrate dominated) pairs 
to small loose schools, 
maximum length of 250mm 

  Towed 90 90 

Upeneichthys vlamingii Southern goatfish Baited 37 165 Cryptic, limited to on or near 
open sandy habitats, single to 
small loose schools, 
maximum length of 350mm 

 Towed 31 31 
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5.2.3 Species distribution models 

For each of the nine fish taxa, generalised linear model (GLM), generalised 

additive model (GAM) and MAXENT models were built using the same 

training and evaluation data derived from either the baited or towed video 

datasets. By using the same training and evaluation dataset derived from baited 

and towed video model performance can be directly compared between 

modelling techniques. The GLMs and GAMs were fitted using 

presence/pseudo-absence, while MAXENT used only the presence datasets 

from each survey method. For the towed-video-derived models a 1:1 ratio of 

presence/pseudo-absence points were used (i.e. if there were 50 occurrences, 

then 50 pseudo-absence points were randomly generated; Table 15). For these 

towed-video datasets, pseudo-absence points were randomly generated along 

transects where no fish taxa were observed. For the baited-video-derived 

models pseudo-absences were generated from every deployment where the 

particular fish taxon was not observed (Table 15). All models used a set of 

relatively uncorrelated (i.e. spearman rho < 0.5) MBES-derived seafloor 

habitat variables as predictors (the same as those Table 1; Chapter 3 section 

2.2.2, but generated for the Hopkins study site), and the fish occurrences as 

response variables. For more detail on the MBES and habitat variables see 

Chapter 3 section 2.2.2. In addition to those listed in Table 1, Euclidean 

distance to Hopkins bank was also used in the models as it is the predominant 

reef structure for the study site. This variable was extracted from the substrata 

classification for the study site (Ierodiaconou et al. 2007a) and was generated 

using the Spatial Analyst tool in ArcGIS 9.3. Habitat variables were log- or 

root-transformed as necessary to prevent extreme frequency distributions 
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within GLM and GAM. Semi-variograms and Moran’s I statistics were built 

using SAM (Spatial Analysis in Macroecology) to check all model residuals 

for spatial autocorrelation. Only very weak spatial auto-correlation (i.e. all taxa 

< 0.1) was found and corrections were not needed (Dormann et al. 2007). 

5.2.3.1 Generalised linear models 

Generalised linear models are commonly used in ecological studies, and 

therefore serve as a benchmark for the other model types (Moisen & Frescino 

2002). The GLMs were built in the Marine Geospatial Ecology Tool kit 

(MGET; Duke University), which interfaces between statistical software ‘R’ 

(and its contributing packages; R Core Development Team 2008) and ArcGIS 

9.3. Each fish taxon was individually modelled using a logit link and a 

binomial error term. All models were fitted with the predictor variables listed 

in Table 1 (at 3 x 3 kernel size) using a backward stepwise procedure. The 

Akaike Information Criterion (AIC) was used to determine variable 

contribution as predictor variables were sequentially added and then dropped 

from the model.  

5.2.3.2 Generalised additive models 

The generalised additive models (GAMs) are an extension of generalised linear 

models, allowing several transformations to be applied to individual 

independent variables before addition to the model. This improves the ability 

of the model to deal with nonlinear data. The GAMs were implemented using 

the R ‘gam’ package within MGET. Where necessary local spline smoothers 

equivalent to two degrees of freedom were used (Hastie 2008). Backward 
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stepwise procedure was again used to determine variable importance based on 

the AIC. 

5.2.3.3 Maximum entropy 

Maximum entropy (MAXENT) has emerged as a powerful and flexible 

alternative to GLM and GAM for assessing species habitat suitability in 

terrestrial studies (see Elith et al. 2006). The MAXENT models were built 

using the same settings outlined in Chapter 3 section 3.2.4. 

5.2.4 Model evaluation 

Using the occurrence datasets that were set aside for model testing, model 

performance was evaluated using the threshold-independent AUC (Fielding & 

Bell 1997) for each observation technique. The ROC curves and the AUC 

values were calculated in DIVA-GIS.  

5.2.5 Similarity between distribution predictions 

As proposed by Warren et al. (2008), a modified Hellinger distance was used 

in order to compare between models derived from the two observation 

techniques. This statistic (I) allows quantitative similarity assessments between 

distribution predictions (i.e. GIS grid layers) by computing the differences 

between them cell by cell. The I-values range from 0, indicating that the two 

predictions are completely different, to 1, suggesting that both are equal. The I-

statistic is independent of sample size and predicted range sizes, making it 

superior to other metrics that have been proposed earlier (Warren et al. 2008). 

In this study, it is considered that I values > 0.8 (i.e. differences that are < 20 

%) are indicative of high degree of model overlap, values between 0.7 and 0.8 
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as moderate and values < 0.7 (i.e. differences are < 70% agreement between 

predictions) indicate low similarity (Roubicek et al. 2010). 

5.3 Results 

5.3.1 Model evaluation 

The majority of the 54 models of habitat suitability had AUC > 0.5 (Figure 13). 

Of these, MAXENT provided the top 12 highest performing models as 

measured by AUC. On 15 occasions GLMs and GAMs produced the same 

performing models as each other (as measured by AUC); with four of these 

being the equal highest performing model. In isolation, GLMs and GAMs only 

provided one model each that performed highest.  
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Figure 13. Summary of model performances as measured by AUC for baited (dark grey) and towed (light grey) video datasets. (a) Caesioperca 
spp., (b) Cheilodactylus nigripes, (c) Meuschenia scaber, (d) Notolabrus tetricus, (e) Odax cyanomelas, (f) Parequula melbournensis, (g) 
Pempheris multiradiata, (h) Pseudolabrus psittaculus, (i) Upeneichthys vlamingii.

d) 

i)h)d)

c) 
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5.3.2 Similarity in predictions of habitat suitability 

5.3.2.1 Similarity in habitat suitability models 
derived from baited-video 

Generally all three modelling approaches provided models with a high degree 

of similarity between habitat suitability predictions for the nine focal fish taxa 

based on the baited-video dataset (i.e. I > 0.80; Table 16; Figure 14; Figure 15). 

The GAMs and GLMs provided near identical models (i.e. I ~ 1) for all nine 

fish taxa. Only slight differences were observed between MAXENT and the 

other two modelling approaches; with the greatest difference being observed 

for predictions of habitat suitability for Pempheris multiradiata (Table 16).  

5.3.2.2 Similarity in habitat suitability models 
derived from towed-video 

When compared to the baited-video datasets, more variation in similarity 

between the three modelling approaches was observed across the nine fish taxa 

based on the towed-video datasets (Table 16; Figure 14; Figure 15). Similar to 

the baited-video-derived models, GAM and GLM provided identical or near 

identical predictions for eight of the nine taxa; with only moderate differences 

being observed for Upeneichthys vlamingii (I = 0.78). Similarly, comparison 

between MAXENT and the other two models showed a high degree of 

similarity for five of the nine fish taxa. For U. vlamingii GAM was moderately 

different to both GLM and MAXENT, but no difference was observed between 

GLM and MAXENT (I = 1). Similarly, both GAM and GLM were moderately 

different to MAXENT for Parequula melbournensis, but no difference was 

observed between GAM and GLM (Table 16). Meuschenia scaber showed the 

same trend as P. melbournensis, albeit to a greater degree (i.e. low similarity; 
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Table 16). The GLM and MAXENT showed only moderate similarity for Odax 

cyanomelas. 

5.3.2.3 Similarity in habitat suitability models 
between video observation techniques 

In contrast to models derived from the same dataset (i.e. baited or towed 

video), greater dissimilarity was observed when the predictions of habitat 

suitability based on the two video observation techniques were compared 

(Table 16). Caesioperca spp. was the only taxa to exhibit a high degree of 

similarity for all modelling approaches between the two observation datasets 

(Figure 14). With exception of the baited-video-derived MAXENT model for 

Cheilodactylus nigripes that showed a high degree of similarity with towed-

video-derived MAXENT, models for C. nigripes had a moderate degree of 

similarity between observation datasets irrespective of modelling approach 

(Table 16). Identical predictions of habitat suitability were observed for GAM 

and GLM between observation datasets for M. scaber (Table 16). A high 

degree of similarity was observed for baited-video-derived GAM and GLM 

with towed-video-derived MAXENT (Table 16). Towed-video-derived GLM 

also showed a high degree of similarity with baited-video-derived MAXENT. 

A moderate degree of similarity was also observed between the towed-video-

derived GLM and the baited-video-derived MAXENT. However, the towed-

video-derived MAXENT showed a low degree of similarity with baited-video-

derived MAXENT. For N. tetricus a high degree of similarity was observed 

between the two observation datasets for GAM, GLM and MAXENT. Towed-

video-derived MAXENT, however, showed a moderate degree of similarity 

with baited-video-derived GAM, GLM and MAXENT (Table 16). Predictions 
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of habitat suitability using GAM, GLM and MAXENT based on either 

observation technique showed a high degree of similarity for O. cyanomelas. 

Towed-video-derived GLM, however, showed a moderate degree of similarity 

with all three models based on baited-video data. Towed-video-derived 

MAXENT for P. melbournensis showed a high degree of similarity with all 

three baited-video-derived models. Both towed-video-derived GAM and GLM 

showed the same trend; with a low degree of similarity between GAM and 

GLM between observation datasets (Table 16). Baited-video-derived 

MAXENT showed a moderate degree of similarity (i.e. I = 0.70). A moderate 

degree of similarity between the two observation datasets was observed for all 

models for P. psittaculus (Table 16). Towed-video-derived MAXENT for U. 

vlamingii showed a high degree of similarity with all three baited-video-

derived models. In contrast, GAM and GLM showed a moderate degree of 

similarity with all three baited-video-derived models (Table 16). A low degree 

of similarity between the two observation datasets was observed for all models 

for P. multiradiata (Table 16; Figure 15). 
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Figure 14. Example of predicted habitat suitability for Caesioperca spp. 
showing high similarity between predictions based on the baited and towed 
video datasets. Left column: baited-video. Right column: towed-video. (a-b) 
presence/pseudo-absence localities (presence: black; pseudo-absence: white). 
(c-d) MAXENT predictions. (e-f) GLM predictions (g-h) GAM predictions. 
Red shading indicates high suitability, while blue highlights low suitability. 
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Figure 15. Example of predicted habitat suitability for Pempheris multiradiata 
showing low similarity between predictions based on the baited and towed-
video datasets. Left column: baited-video. Right column: towed-video. (a-b) 
presence/pseudo-absence localities (presence: black; pseudo-absence: white). 
(c-d) MAXENT predictions. (e-f) GLM predictions (g-h) GAM predictions. 
Red shading indicates high suitability, while blue highlights low suitability. 
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Table 16. Summaries of the similarity between habitat suitability predictions 
using the I-statistic. I-values range from 0, indicating that the two predictions 
are completely different, to 1, suggesting that both are equal. Coloured cells 
indicate similarity groupings: green = high, orange = moderate, red = low 
similarity. 

Baited Towed  
GAM GLM MAXENT GAM GLM

Caesioperca spp.  Baited GLM 0.96 
MAXENT 0.87 0.88 

Towed GAM 0.92 0.93 0.88 
GLM 0.92 0.93 0.88 1.00 
MAXENT 0.87 0.87 0.83 0.87 0.87 

Cheilodactylus 
nigripes  Baited GLM 0.99 

MAXENT 0.82 0.82 
Towed GAM 0.76 0.76 0.83 

GLM 0.76 0.76 0.83 1.00 
MAXENT 0.76 0.76 0.82 0.90 0.90 

Meuschenia 
scaber Baited GLM 0.98 

MAXENT 0.90 0.90 
Towed GAM 1.00 1.00 0.75 

GLM 0.75 0.75 0.82 0.80 
MAXENT 0.82 0.82 0.64 0.66 0.60 

Notolabrus 
tetricus Baited GLM 0.95 

MAXENT 0.90 0.90 
Towed GAM 0.87 0.87 0.84 

GLM 0.87 0.87 0.84 1.00 
MAXENT 0.79 0.79 0.77 0.86 0.86 

Odax 
cyanomelas  Baited GLM 0.99 

MAXENT 0.89 0.89 
Towed GAM 0.81 0.81 0.80 

GLM 0.76 0.76 0.75 0.81 
MAXENT 0.82 0.82 0.81 0.83 0.76 

Parequula 
melbournensis  Baited GLM 0.98 

MAXENT 0.86 0.86 
Towed GAM 0.68 0.68 0.70 

GLM 0.68 0.68 0.70 1.00 
MAXENT 0.82 0.82 0.87 0.72 0.72 
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Table 16. continued… 
Pempheris 
multiradiata  Baited GLM 0.95 

MAXENT 0.77 0.77 
Towed GAM 0.63 0.63 0.67 

GLM 0.63 0.63 0.67 0.97 
MAXENT 0.60 0.60 0.70 0.83 0.83 

Pseudolabrus 
psittaculus  Baited GLM 0.97 

MAXENT 0.87 0.88 
Towed GAM 0.75 0.75 0.75 

GLM 0.75 0.75 0.75 0.89 
MAXENT 0.71 0.71 0.70 0.89 0.89 

Upeneichthys 
vlamingii  Baited GLM 0.99 

MAXENT 0.87 0.87 
Towed GAM 0.78 0.78 0.79 

GLM 0.78 0.78 0.79 0.78 
MAXENT 0.80 0.80 0.82 0.78 1.00 

5.4 Discussion 

This study explored two commonly used underwater video techniques to 

provide occurrence data to develop and compare both presence/pseudo-absence 

and presence-only fine-scale habitat suitability models for nine species of 

temperate marine fishes. The habitat suitability models built in this study 

performed considerably better than random when assessed by AUC. The AUC 

values recorded in this study are similar to those observed in previous marine 

and terrestrial habitat suitability modelling studies, and supports the notion that 

presence-only models can provide predictions that can, at times be, better than 

presence/absence approaches (Segurado & Araújo 2004, Elith et al. 2006). 

Despite the fact that AUC has recently been criticised (because the size of the 

study site and number of occurrences influences the AUC values see; Lobo et 

al. 2008, Peterson et al. 2008), it does provide a preliminary indication of the 

usefulness of a model for the identification of suitable habitat for a particular 
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species (Elith et al. 2006). This study has also demonstrated this to be the case, 

and further, that baited and towed video survey techniques are capable of 

providing models of similar quality (AUC); a conclusion supported by other 

recent studies (Wilson et al. 2007, Moore et al. 2009, Pittman et al. 2009). For 

example, Moore et al. (2009) compared the ability of presence/absence 

methods (GAM and classification and regression trees) to predict fine-scale 

habitat suitability for demersal fishes based on baited-video and MBES 

datasets. They found that baited-video and MBES datasets were useful in 

providing a detailed understanding of demersal fish-habitat associations, as 

well as accurately predicting species distributions across unsurveyed locations 

where continuous spatial seafloor data were available (Moore et al. 2009). 

Similarly, Chapter 3 used towed-video and MBES-derived datasets to compare 

commonly used presence-only methods (i.e. BIOCLIM, DOMAIN, Ecological-

Niche Factor Analysis, MAXENT). Chapter 3 concluded that towed-video-

based occurrence data provided well-performing, fine-scale models and 

encouraged the ongoing use of presence-only approaches, particularly 

MAXENT, in modelling suitable habitat for demersal marine fishes. Despite 

these studies supporting the idea that underwater video-based occurrence and 

MBES-derived datasets are capable of providing well-performing models, this 

study is one of the first to contrast these two video observation techniques for 

generating occurrence datasets for predictions of fine-scale habitat suitability 

for temperate marine fishes (using both presence/pseudo-absence and presence-

only modelling techniques). 

and While numerous studies have compared modelling approaches in terms of 

model performance (i.e. via AUC or kappa; Segurado & Araújo 2004, Elith et 
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al. 2006, Leathwick et al. 2006, Tsoar et al. 2007, Ready et al. 2010; Chapter 

3), the main purpose of this chapter was to highlight how sensible-looking, 

well-performing (based on AUC) models can provide very different predictions 

of habitat suitability depending on the choice of video observation dataset used. 

Overall, greater dissimilarity between the three modelling approaches was 

observed across the nine fish taxa when models based on the two occurrence 

datasets where compared (relative to models based on the same survey 

method). This finding suggests that the characteristics of the occurrence data 

are important. This concept is supported by Kadmon et al. (2003) who 

suggested that models are influenced by the reliability of occurrence data and 

distribution characteristics of the modelled species. The latter has been 

thoroughly discussed in previous marine and terrestrial studies (e.g. Kadmon et 

al. 2003, Segurado & Araújo 2004, Sérgio et al. 2007, Chapter 3), and suggest 

that narrowly distributed species that exhibit minimal niche variation provide 

more reliable models.  

There are many factors that potentially influence the reliability of occurrence 

data of fishes, including traits such as; body size, crypticity, schooling 

behaviour, habitat and observer biases (MacNeill et al. 2008, Bozec et al. 

2011). These are all inherently influenced by the choice of survey method. 

Although this study has used two underwater video techniques (with both 

datasets being processed by the same experienced observer to minimise inter-

observer error) a potential explanation for the disparity between predictions of 

habitat suitability may be attributed to the deployment differences between the 

surveying methods (i.e. stationary v. moving). Consider habitat patches with 

comparable fish population density but varying in natural shelters such as 
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crevices or macroalgae. Sampling that relies on the use of a moving platform 

(e.g. an obliquely angled towed-video camera that is flown 2 m above the 

seafloor) to provide visual observations could result in incomplete detection in 

habitat patches with more natural cavities or canopy forming macroalgae (e.g. 

kelp). By contrast, sampling that relies on a stationary platform (e.g. baited-

video) to provide a visual observation dataset may allow time for species that 

are hiding amongst the crevices or canopy forming macroalgae to be observed. 

However, the use of bait in these systems is well documented to increase the 

number of pelagic or epibenthic carnivores in the vicinity of the camera 

deployment (Willis & Babcock 2000, Willis et al. 2000, Watson et al. 2005), 

which may result in reduced observations of cryptic or prey species recorded 

by these systems. While the use of presence-only methods (such as MAXENT 

in this study) potentially negates the issue of non-detections, the fact still 

remains that different predictions were made because the two video survey 

methods detected presences in slightly different environmental niches. For 

example, the fish taxon that provided predictions that were most similar was 

Caesioperca spp. These are conspicuous aggregating fish that are commonly 

observed in cloud-like schools feeding above reef crests (Edgar 2000). 

Consequently, both video methods detected this species in similar ecological 

niches, and are thus reflected in the similar predictions of suitable habitat. 

Conversely, P. multiradiata showed the lowest similarity in model predictions 

between survey methods. This timid species inhabits caves ranging from 

shallow (~10 m) macroalgal-dominated reefs to deeper (~50 m) invertebrate 

colonised systems (Gomon et al. 2008). For this species, the two video 

methods detected individuals in different environmental niches. For example, 
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the stationary characteristic of the baited-video method enabled individuals 

hiding among the shallow, complex reef systems to be recorded. Further, the 

baited system recorded fewer occurrences in the deeper regions, which can 

possibly be attributed to the higher number of pelagic and epibenthic 

carnivores that were attracted to (and recorded by) the baited video throughout 

these areas. This may result in avoidance by P. multiradiata from baited video 

deployments on deployments were these predatory fishes were present in high 

numbers. By contrast, the towed video did not attract these predatory 

individuals, and recorded more P. multiradiata in the deeper invertebrate 

dominated regions of the study site. 

Whilst all model predictions for the nine fish taxa reflect aspects of the known 

ecology, the results from this study suggest that differences between model 

predictions are actually reflecting the apparent species distribution (i.e. a 

combination of the habitat suitability of a fish species and the probability of 

detecting it; Kéry et al. 2010). This bias cannot be resolved without 

consideration of variations in detectability that may arise from differences 

between survey methods, habitats and species (Kéry & Schmidt 2008). 

Additionally, the strength of a habitat variable relationship in a SDM may be 

underestimated whenever imperfect detection is not accounted for, even with 

constant detectability (Tyre et al. 2003). Although some conventional SDMs 

allow for the problem of missing non-detection data to be partially addressed 

(i.e. missing zeros; Ward et al. 2009) or permit very general functional forms 

of covariates to be fitted, such as regression trees (Breiman 2001) and boosted 

regression trees (Elith et al. 2008), site-occupancy models may provide a useful 

alternative (Kéry et al. 2010). Site-occupancy models use the presence/absence 
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(or more correctly termed detection/non-detection) patterns at sites surveyed 

multiple times (i.e. at least twice) to separate the sampling method from the 

ecological process and thus obtain estimates of the true species distribution 

along with unbiased estimates of variable importance (MacKenzie et al. 2002, 

Tyre et al. 2003, Kéry et al. 2010). However, temperate marine fish studies 

have rarely addressed the issue of detectability in video-derived occurrence 

datasets as surveying a site (especially for the purpose of building localised, 

fine-scale SDMs) more than once is often impractical due to limited weather 

windows (for more multiple surveys in a single field season) and deployment 

costs (both in a single season and between seasons). While UVC methods have 

developed distance sampling techniques (e.g. Kulbicki & Sarramégna 1999) 

that enable detectability to be accounted for, further research is needed to 

determine the relative detectability of fishes using towed or baited video 

systems. 

5.5 Conclusions 

This study has demonstrated that the characteristics of the video-derived 

occurrence data are potentially more important than the chosen modelling 

technique in developing fine-scale models of habitat suitability for temperate 

marine fishes. However, based on the results in the present study it is difficult 

to draw any general trends in regards to which circumstances what survey 

video method provides more reliable occurrence datasets. Nonetheless, the 

main objective here was not to directly compare model performance, or even 

emphasise which of the two video methods compared are better for building 

models of habitat suitability for marine fishes. Instead, the purpose of this 

chapter was to raise awareness that interpretation of habitat suitability models 
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needs to account for the potential influence that the choice of survey method 

used to provide occurrence datasets may have. Whilst limitations within the 

datasets used in the present study precluded the use of site-occupancy models, 

which incorporate measures of detectability, it is suggested that these models 

may provide a practical alternative to conventional SDMs to predict the 

distribution of suitable habitat for demersal fishes. In the absence of repeat 

surveys, however, conventional SDMs could be built utilising occurrence 

datasets derived from different survey methods deployed at the same study site 

in a single field season. The similarity between these predictions could then be 

assessed (e.g. using I-statistic) to ensure that model outputs reflect as close to 

the actual distribution of suitable habitat for marine fishes as possible. 
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6.1 Summary of key findings  

As each chapter is a separate body of research, they each contain their 

respective discussions of the major findings in the context of current literature. 

Hence, this will not be revisited to the same level of detail in this concluding 

chapter. To illustrate the contribution this thesis has made to the field of marine 

quantitative spatial ecology, the purpose of this concluding chapter is to link 

the major findings of the research to the objectives defined in Section 1.2 of 

Chapter 1.  

This thesis has examined the relationship between high-resolution, spatially-

explicit MBES-derived seafloor characteristics and video-derived fish 

occurrences for two sites off the coast of south-eastern Australia. The thesis 

was motivated by the recognition of the potential role of species distribution 

models in managing marine demersal fish species and their habitats. 

Specifically, the results achieved in this thesis have contributed to a better 

understanding of temperate marine fish distributions in five ways: 

(1) How the choice of spatial scale used to calculate MBES-derived 

seafloor datasets influenced the prediction of habitat suitability for 

demersal fishes;  

(2) How habitat suitability predictions can be used to evaluate the 

representativeness of Marine National Parks;  

(3) Which presence-only modelling approach better suits the modelling of 

habitat suitability of temperate marine fishes;  
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(4) The importance of spatially-explicit, continuous seafloor habitat 

variables in quantifying and predicting habitat suitability; and,  

(5) How the relative detectability of fish species from video survey 

methods potentially influence the occurrence datasets and predictions of 

habitat suitability.  

6.1.1. Importance of spatial scale on habitat 
suitability models 

Since seafloor variables, and indeed species distributions, span a continuum of 

spatial scales, it is important to consider the scale at which variables are 

calculated before any attempt is made to quantify and predict the habitat 

suitability of marine species (Andrew & Mapstone 1987, Chesson 1998, Sale 

1998, Wilson et al. 2007). Chapter 2 investigated how spatial scale used to 

calculate MBES-derived seafloor datasets influenced the performance of 

habitat suitability predictions by comparing the three different scale models 

(fine; 56.25 m2, medium; 506.25 m2, and coarse; 2756.25 m2). The coarse 

model produced better suitability results compared to fine and medium, which 

supports the notion that habitat selection of space-demanding species may be 

dominated by variables operating above the home-range scale (Carroll et al. 

1999). Similar scale-dependence of habitat variables has been found previously 

for marine fish species (Choat & Ayling 1987, Ault & Johnson 1998, Connell 

& Kingsford 1998, Connell 2002, Anderson & Millar 2004, Anderson & 

Yoklavich 2007). For example, Anderson and Millar (2004) examined the 

influence of tens of metres (transects), hundreds of metres to kilometres (sites) 

and hundreds of kilometres (locations) on the distribution and habitat 

associations of temperate reef fishes. They concluded that the greatest variation 
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in fish assemblages occurred at the finest spatial scale, between individual 

transects. Whilst establishing a general rule for identifying the appropriate 

scale to investigate individual fish species-habitat relationships is important, it 

is problematic; largely due to the fact that species response uniquely to their 

environment (O'Neill et al. 1996). For instance, fine spatial scales (i.e. metres) 

can provide improved predictive power compared to coarse spatial scales (i.e. 

hundreds of metres) for some demersal fish species (e.g. Dascyllus aruanus; 

Holbrook et al. 2000), but not for others (e.g. Scarus iserti; Tolimieri 1998). 

Consequently, it is recommended that variables in habitat suitability models 

should be included at different spatial scales (relevant to the focal taxon) so 

that subtle, but important, habitat preferences can be detected. 

Calculating variables at multiple spatial scales is traditionally a time 

consuming process. However, advances in computing power coupled with new 

software algorithms now make the generations of these variables a less 

daunting task. For example, Landserf 

(http://www.soi.city.ac.uk/~jwo/landserf/) enables the batch calculation of 

elevation, slope, aspect, seven measures of seafloor curvature, and feature type 

(similar to BPI) at any user defined spatial scale. As computer power and 

software continues to advance the time it takes to batch calculate variables at 

multiple scales will be reduced considerably.  

6.1.2. Evaluating Marine National Parks 

Approximately 11% of Victoria's marine waters are contained within reserve 

type tenures, which include 5.3% in no-take protection zones and around 6% in 

multiple-use areas (Boxshall 2007). These no-take protection zones include 11 
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Marine Sanctuaries (MSs) and 13 MNPs (Boxshall 2007). While these MNPs 

and MSs are expected to have social and economic benefits (for a review of 

MPA benefits see; Kelleher & Kenchington 1992), their primarily purpose is to 

protect representative examples of biodiversity, ecological processes and 

natural features along the Victorian coastline (Boxshall 2007). When 

proclaimed, however, there was paucity in the understanding benthoscape 

features and ecosystems contained within these MPAs (Boxshall 2007). The 

data that existed were limited to shallow (i.e. < 10 m) regions and were derived 

from sparsely-located SCUBA diver transects (Boxshall 2007). However, 

MPAs whose objectives include conservation functions must have a solid 

foundation in biology to succeed (Kelleher 1996, Stevens 2002, Roberts et al. 

2003). Roberts et al. (2003) suggested that an MPA with little biological value 

will provide few benefits, just as a bank account with little money will yield 

almost no interest. Thus, understanding the biological value of Victoria’s 

MPAs has become the focus of MBES-derived mapping efforts (e.g. Holmes et 

al. 2008).  

Given that Victoria’s MPAs are supposed to protect representative examples of 

biodiversity, understanding how representative they are relative to their 

adjacent unprotected regions is also important. Currently, SCUBA diver 

transects are used to provide data to compare trends in- and outside each MPA 

(for details see; Edmunds & Hart 2003). Because of SCUBA-divers are used, 

these datasets have limited spatial and depth coverage. The second part of 

Chapter 2 showcased an alternative approach to assess representativeness of an 

MNP. This chapter examined observed spatial patterns in habitat suitability 

inside a MNP compared to adjacent unprotected waters. While the MNP was 
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representative with respect to the total area of the habitat suitability classes, 

some significant differences in spatial patterns were observed. For example, 

unsuitable and highly suitable habitat patches were distributed 

disproportionally within the MNP (i.e. significantly smaller Interspersion and 

Juxtaposition Index inside the MNP). In addition, unsuitable habitat was also 

more regularly arranged in the MNP (i.e. significantly larger Mean Shape 

Index). While this chapter focused on a single demersal fish, it is 

acknowledged that the purpose of Victoria’s MNPs is to protect biodiversity in 

general. However, by applying similar approaches to more species (or to a 

keystone species), the predictions of habitat suitability can potentially provide 

a better understanding of the representativeness of suitable habitat within these 

MNPs with respect to those adjacent areas, and thus, are useful in not only 

selection of such sites but evaluation of their effectiveness.  

6.1.3. Comparing modelling algorithms 

Although modelling algorithms are the focus of a rapidly growing discipline, at 

present, we lack extensive comparisons of the relative performances of 

methods to model species distributions based on presence-only data in the 

marine environment. While there are many terrestrial studies (e.g. Segurado & 

Araújo 2004, Elith et al. 2006, Tsoar et al. 2007) that provide at least a 

preliminary understanding of methods’ behaviour, it is important to use 

‘marine’ data on species distributions to expand understanding of the relative 

performance of methods in the marine realm. Chapter 3 compared 10 

commonly used SDM algorithms and provided a comprehensive evaluation of 

which presence-only techniques were most suited to modelling suitable habitat 

of demersal fishes. Generally, MAXENT produced the best performing models 
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for the taxa and study area examined, followed by ENFA GM, ENFA HM, 

DOMAIN, BIOCLIM, ENFA M, ENFA Min, ENFA Ma, ENFA Mae and 

ENFA Me algorithms. Given that these models span a continuum of model 

complexity (i.e. the differences in the models ability to fit the complex species-

environment relationships), results from this chapter are consistent with the 

‘terrestrial’ idea that increased model complexity increases model performance 

(Pearce & Ferrier 2000). It was also found that fish with clearly definable 

environmental niches can be modelled with higher performance than those of 

more generalist species. For example, the conspicuous cosmopolitan 

Caesioperca spp. generally yielded lower AUC values, while the strong site 

affiliated N. tetricus exhibited higher performing models. Based on the results 

from this chapter, the continued use of these presence-only models, particularly 

MAXENT, is recommended in the prediction of suitable habitat for demersal 

fishes. 

6.1.4. Importance of spatially-explicit, continuous 
habitat variables 

The second part of Chapter 3 used the best performing model (i.e. MAXENT) 

for each fish taxa to determine the importance of MBES-derived variables in 

predicting the distribution of habitat suitability for demersal fishes. Generally, 

Euclidean distance to nearest reef, HSI-b (derivative of backscatter), rugosity 

and maximum curvature were the most important variables in determining 

suitable habitat for the five demersal fish taxa investigated. The identification 

of many of these variables is consistent with previous studies that have 

identified the influence of seafloor characteristics on the distributions of 

suitable habitat for demersal fishes (Ault & Johnson 1998, Connell & Lincoln-
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Smith 1999, Anderson & Millar 2004, Moore et al. 2009, Smith et al. 2010). 

For example, Lauria et al. (2011) found that substrata type was the main 

significant predictor of Pleuronectes platessa (European plaice) habitats. 

Similarly, Chatfield et al. (2010) found that substrata type, depth and 

macroalgal type significantly influenced fish assemblages. This is because they 

are either direct or indirect proxies that represent important physiological or 

ecological limitations; including the availability of territory, food, shelter or the 

existence of predation or competition (Choat & Ayling 1987, Friedlander & 

Parrish 1998, Priede & Merrett 1998, García-Charton et al. 2004, Chatfield et 

al. 2010). This chapter, however, highlighted the importance of having detailed 

spatially-explicit (i.e. full-coverage) seafloor data rather than the point-located 

descriptors relied on by earlier studies (Friedlander & Parrish 1998, Babcock et 

al. 1999, Westera et al. 2003, Willis & Anderson 2003). These spatially-

continuous measures of seafloor data reflect subtle, but important, differences 

in habitat suitability which provide end users (e.g. management agencies or 

research scientists) with accurate and detailed spatially-explicit information 

about demersal fishes.  

6.1.5. The influence of video method on occurrence 
data and predictions of habitat suitability 

The quality of occurrence dataset is a key issue affecting reliability of model 

predictions (Stockwell & Peterson 2002, Zaniewski et al. 2002). Underwater 

video methods are increasingly being applied to survey demersal fishes in an 

attempt to overcome some of the challenges faced by traditional fish survey 

methods (e.g. SCUBA-derived underwater visual census). However, these 

video-based methods can be used without a thorough understanding of their 
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influence on resultant datasets. Chapter 4 investigated how the choice of video 

survey method influences the fish assemblages, functional group and measure 

of observability across six different seafloor habitats. It was found that baited 

and towed video techniques sampled very different assemblages, functional 

groups and degrees of observability. Based on this result, coupled with the 

considerable difference in time associated with collecting and analysing video 

footage, it is recommended that careful consideration should be given to the 

goals of future research programs. If a single fish surveying technique is to be 

used, then the research from this chapter suggested the baited-video technique 

will provide measures for a far greater number of species (particularly pelagic 

and epibenthic carnivores) across a broader range of benthic biological habitats 

(when deployed using multiple units concurrently). While the baited-video 

technique was more time efficient in the collection of footage, it took far longer 

to analyse compared to the data collected using the towed-video system. 

However, the two video techniques provide complimentary information by 

recording different fish species when compared to each technique used in 

isolation, especially over structurally complex habitats. Accordingly, if the 

ultimate aim of the study is to quantify species assemblages then the use of 

these two video techniques in parallel will provide better composition 

estimates. 

As seen in Chapters 2 and 3, as well as elsewhere (e.g. Dolan et al. 2008, 

Moore et al. 2009), video-derived datasets are being increasingly used to 

provide occurrence data for spatially-explicit models of habitat suitability in 

the marine environment. The influence of these video-derived occurrence 

datasets on the predictions of habitat suitability was investigated in Chapter 5. 
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The main objective of this chapter was not to directly compare model 

performance or even emphasise which of the two video methods compared is 

better for building models of habitat suitability for marine fishes. Instead, it 

was to raise awareness that interpretation of habitat suitability models must 

account for the potential influence that the choice of survey method has on the 

resulting outputs. It was found that the choice of modelling approach did not 

considerably influence the prediction of distributions based on the same 

occurrence dataset. By contrasting presence/absence and presence-only models 

in this chapter, the results support the notion that presence-only methods can 

provide comparable performing models to presence/absence models (Elith et 

al. 2006). However, greater dissimilarity among model predictions was 

observed across the nine fish taxa when the baited and towed occurrence 

datasets were compared. Consequently, predictions may not actually reflect the 

species actual distribution but rather the apparent distribution (i.e. a 

combination of species distribution and the probability of detecting it). Because 

these predictions are increasingly being used to identify and prioritise potential 

regions for protection (e.g. the representation of essential fish habitat within 

marine reserves; Valavanis et al. 2004), it is encouraged that marine 

practitioners carefully interpret model predictions.  

6.2 Recommendations for further work 

The key findings of this thesis have contributed to an improved way species 

distribution models are used in marine environment. Furthermore, model 

predictions presented in this thesis also provide an accurate baseline that may 

facilitate researchers in addressing more targeted biological questions (e.g. 

effects of climate change), as well as helping conservation practitioners to 
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ensure that resources are managed in a sustainable manner (Araújo & Williams 

2000, Rondinini et al. 2006). For example, Araújo and Williams (2000) used 

SDMs, which they later transformed into estimates of persistence using 

information on expected threats and species' vulnerability, to select 

complementary regions to ensure the proposed reserves contained high 

estimates of persistence for each species. Considering the results and findings 

of this thesis, a number of recommendations for future work can be made to 

further develop the methods of quantifying and predicting the habitat suitability 

of demersal fishes based on remotely-sensed video and MBES datasets. These 

recommendations are briefly discussed below. 

6.2.1 Addition of other explanatory variables 

Although it is notable that models had strong predictive performances, even 

when restricted to MBES-derived seafloor variables, it is suspected that model 

performance could be improved with the inclusion of unaccounted-for 

environmental (e.g. bottom shear-stress; Vaz et al. 2007, oceanographic 

currents; Malcolm et al. 2010b) and ecological (e.g. inter/intra specific 

competition, predation) variables (if and when they become available at the 

appropriate resolution). While it is possible to calculate some of these variables 

(e.g. bottom shear-stress), at present they are not available at the resolution of 

the MBES datasets. However, as technology continues to develop, downscaling 

of these variables may be possible and it is envisaged that they could be 

incorporated into fine-scale models of habitat suitability in the future. 
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6.2.2 Temporal changes in habitat suitability 
predictions 

Annually, many fish species exhibit temporal migration patterns between 

habitats and regions (Malcolm et al. 2007). Models were based on once-off 

surveys. As a consequence, model predictions reflect a ‘snap-shot’ of where a 

species is likely to generally occur. Although the fish taxa used to create SDM 

predictions of suitable habitat within this thesis exhibit minimal inter-annual 

migration between regions (i.e. species maintain populations at the study site 

year-round), some fine-scale diurnal movement between habitats is likely to be 

evident. For example, observations of feeding behaviour for C. nigripes 

suggest that this species is diurnally active; sheltering in caves and crevices 

during the night and feeding in less structurally complex habitats (e.g. mixed 

red algae and invertebrate habitats) during the day (Cappo 1980). Additionally, 

larger specimens of this species are more active earlier in the morning and later 

in the afternoon than smaller individuals, which feed consistently throughout 

the day in shallower regions (i.e. 0-20 m depth; Cappo 1980, Cappo 1995). 

These two concepts (i.e. fine-scale movements between habitats and variations 

in diurnal feeding activity between size-classes) should be kept in mind when 

interpreting the SDM predictions generated in this thesis.  

Acoustic tagging is one way to assess the potential for the confounding of fine-

scale movement patterns in the SDM predictions of suitable habitat contained 

within this thesis. By tagging a number of individuals from different size-

classes, estimates of the home range for the focal taxon could be achieved 

(Lucieer & Pederson 2008). Home range is an estimation of the area used by 

the organism in its ‘normal’ daily activities of foraging, resting and sleeping 
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(Burt 1943). Although animal telemetry data contains the movement for each 

tagged individual, the Home Range Extension (HRE) within ArcGIS (Rodgers 

& Carr 1998) could be used to calculate habitat use. For example, Topping et 

al. (2005) used acoustic telemetry and HRE to estimate the habitat use of the 

labrid Semicossyphus pulcher (California sheephead). They found that S. 

pulcher were strictly diurnal and that there was a significant relationship 

between fish length and proportion of time spent in different habitats (i.e. sand 

υ reef). They also found that S. pulcher occupied rocky-reef areas 54% of the 

time, and, within these areas, a greater percentage of daytime was spent in 

high-relief areas. By combining HRE estimates of habitat use with the SDM 

predictions of suitable habitat in a GIS may allow predictions to be more 

rigorous assessed. This concept is novel to the research of marine quantitative 

spatial ecology and warrants further investigation. 

6.2.3 Predicting suitable habitat for different 
demersal fish life-stages  

It is widely regarded that length is really important as an indicator for fisheries 

management (e.g. Berkeley et al. 2004) and MPAs (e.g. Roberts et al. 2001), 

but fish size has rarely been included in models; with the exception to grouping 

into ‘juvenile’ or ‘adult’ classes. For example, Stoner et al. (2001) used 

generalised additive models to predict the distribution of adult and juvenile 

life-stages of flounder separately. The models highlighted that juvenile 

flounder preferred deep depositional environments, whereas adults occurred 

more frequently in shallower waters (Stoner et al. 2001). Since many demersal 

fish exhibit age-dependent ontogeny between habitats (Gratwicke et al. 2006, 

Shepherd & Brook 2007, Laurel et al. 2009), including length information into 
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the models could improve our ecological understanding, as well as providing 

better predictive power. Stereo camera systems (such as those used in Chapters 

4 and 5 of this thesis) are capable of accurately triangulating length 

measurements for fishes recorded during deployment (for a review see; Shortis 

et al. 2009). Accordingly, these length measurements could be used to as a 

predictor variable in SDMs. While these measurements were collected with the 

datasets used in Chapter 4 and 5, they are yet to be incorporated in habitat 

suitability models.  

6.2.4 Determining the influence of tow speed on 
demersal fish detection rates 

Survey speed is an influencing factor when surveying demersal fishes. For 

example, Lincoln-Smith (1989) found that the swimming speed of SCUBA 

divers had a critical, though differential, effect upon sample counts. He found 

that small or cryptic fishes were severely underestimated at relatively fast 

observer speeds because not enough time was available to search thoroughly 

for them. Some highly mobile species, however, were overestimated at slow 

speeds, due to their movement across survey transects during counting periods, 

or to inadvertent double counting (Lincoln-Smith 1989). However, there is a 

lack of quantitative assessment of the influence of tow speed on the assessment 

of demersal fishes using towed video. Consequently, trials need to be 

undertaken to quantitatively assess the influence of tow speed on the demersal 

fish assemblages recorded by towed video. 
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6.2.5 Modelling suitable habitat based on relative 
abundance  

The models in this thesis were based on presence/pseudo-absence or presence-

only datasets. In terrestrial systems, there has been increasing interest in the 

potential for modelling of relative abundance or density data instead of 

presence/absence data as a means of improving predictive mapping of habitat 

quality and delineation of high quality habitat (Pearce & Ferrier 2001). This 

interest is based on the assumption that relative abundance is likely to be a 

good indicator of habitat quality; reflecting key factors such as reproductive 

success and susceptibility to extinction (Hobbs & Hanley 1990). A positive 

correlation between habitat quality and species abundance has been assumed in 

several terrestrial fauna and flora studies in Australia (e.g. Stockwell et al. 

1990, Lindenmayer et al. 1991), and elsewhere (e.g. Lavers & Haines-Young 

1996, Leathwick 1998). Given that there is a major difference in habitat 

suitability between observations of a single fish compared to multiple 

individuals at a site, incorporation of relative abundance datasets (from the 

stereo baited-video) into models may also provide better quantification and 

prediction of habitat suitability of temperate marine fishes. While relative 

abundance models have been used in the marine environment to predict the 

abundance of fishes (e.g. Connolly et al. 2009), it has received considerably 

less attention relative to terrestrial ecosystems, and warrants further 

investigation. 

6.2.6 Modelling the actual distribution of demersal 
fishes 

Imperfect detection is a fundamental issue in species distribution modelling 

(Kéry et al. 2010). Underwater video methods are increasingly being used to 
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provide occurrence datasets for models. Imperfect detection in datasets used in 

conventional species distribution models potentially results in underestimates 

of the extent of distributions (Kéry et al. 2010). Furthermore, patterns in 

detectability will erroneously be ascribed to species distributions. In contrast, 

site-occupancy models applied to replicate detection/non-detection data offer a 

powerful framework for making inferences about species distributions while 

correcting for imperfect detection. For example, Rota et al. (2011) contrasted 

hierarchical occupancy models (that explicitly estimate and adjust for 

detectability) with logistic regression models (that do not correct for 

detectability) and MAXENT models (that attempt to circumvent the 

detectability problem by using data from known presence locations only). 

Overall, they found that occupancy models were similar to or better than the 

other approaches tested in terms of predictive performance (as measured by the 

AUC and kappa). They also established that predictive performance varied 

across a gradient in species detectability; with logistic regression providing 

lower relative performance for less detectable species and MAXENT providing 

lower performance for highly detectable species. Considering the issues 

mentioned previously in this thesis in relation to the reliable detection of 

demersal fishes from remotely-sensed underwater video, the application of 

occupancy models may ultimately allow actual distribution of habitat 

suitability to be disentangled from apparent habitat suitability (i.e. an unknown 

proportion of species distributions), and warrants further investigation.  
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Appendix 1 
The family, genus, species and common name of all fish recorded using the 
towed-video within the Discovery Bay study site. Species authorities were 
identified according to Gomon et al. (2008).  

Family Species Common 
Name 

Relative 
abundances 

Number of 
Occurrences

Aplodactylidae Aplodactylus arctidens 
(Richardson, 1839) 

Southern 
seacarp 3 3

Aracanidae Aracana aurita (Shaw, 
1798) 

Shaw's 
cowfish 2 2

Aulopidae Aulopus purpurissatus 
(Richardson, 1843) 

Sergeant baker 1 1

Callionymidae Foetorepus calauropomus 
(Richardson, 1844) 

Common 
stinkfish 3 3

Carangidae Trachurus declivis 
(Jenyns, 1841) 

Common jack 
mackerel 2607 25

Cheilodactylidae Cheilodactylus nigripes 
(Richardson, 1850) 

Magpie 
morwong 37 33

 Cheilodactylus spectabilis 
(Hutton, 1872) 

Banded 
morwong 4 4

 Dactylophora nigricans 
(Richardson, 1850) 

Dusky 
morwong 3 3

 Nemadactylus 
valenciennesi (Whitley, 
1937) 

Queen snapper 
1 1

Dinolestidae Dinolestes lewini 
(Griffith, 1834) 

Pike 4 3

Gempylidae  Thyrsites atun 
(Euphrasen, 1791) 

Couta 1 1

Girellidae Girella zebra 
(Richardson, 1846) 

Zebra fish 1 1

Heterodontidae Heterodontus 
portusjacksoni (Meyer, 
1793) 

Port jackson 
shark 2 2

Labridae Achoerodus sp. Blue grouper 3 3
 Dotalabrus aurantiacus 

(Castelnau, 1872) 
Pretty polly 6 5

 Notolabrus fuciola 
(Richardson, 1840) 

Purple wrasse 8 8

 Notolabrus tetricus 
(Richardson, 1840) 

Blue-throat 
wrasse 61 61

 Pictilabrus laticlavius 
(Richardson, 1839) 

Senator wrasse 9 7

 Pseudolabrus psittaculus 
(Richardson, 1840) 

Rosy wrasse 488 376

Latrididae Latridopsis forsteri 
(Castelnau, 1872) 

Bastard 
trumpeter 2 2

Monacanthidae Eubalichthys bucephalus 
(Whitley, 1931) 

Black reef 
leatherjacket 1 1

 Meuschenia flavolineata 
(Hutchins, 1977) 

Yellow stripe 
leatherjacket 1 1
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 Meuschenia scaber 
(Forster, 1801) 

Velvet 
leatherjacket 7 7

 Monacanthidae sp. Unidenitifiable 
leatherjacket 18 16

 Scobinichthys granulatus 
(Shaw, 1790) 

Rough 
leatherjacket 7 6

Moridae Pseudophycis barbata 
(Günther, 1862) 

Bearded rock-
cod 1 1

Mullidae Upeneichthys vlamingii 
(Cuvier, 1829) 

Southern 
goatfish 15 13

Pempherididae Pempheris multiradiata 
(Klunzinger, 1879) 

Common 
bullseye 86 50

Platycephalidae Platycephalus bassensis 
(Cuvier, 1829) 

Sand flathead 13 12

Rhinobatidae Trygonorrhina guaneria 
(Whitley, 1932)  

Southern 
fiddler ray 2 2

Sciaenidae Argyrosomus 
holoepidotus (Lacepède, 
1802) 

Mulloway 
2 1

Scorpaenidae Neosebastes 
scorpaenoides(Guichenot, 
1867) 

Common 
gurnard perch 18 18

Scorpididae Scorpis aequapinnis 
(Richardson, 1848) 

Sea sweep 39 18

Serranidae Caesioperca spp. (a 
combination of C. rasor 
(Richarson, 1839) and C. 
lepidoptera (Forster, 
1801)) 

Perch 

3842 948

Triglidae Lepidotrigla vanessa 
(Richardson, 1839) 

Butterfly 
gurnard 8 8

Urolophidae Urolophus cruciatus 
(Lacepède, 1804) 

Cross-back 
stingaree 2 2

 Urolophus 
paucimaculatus (Dixon, 
1969) 

Sparsely-
spotted 
stingaree 

3 3

    Total 7311 1651
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Appendix 2 
The family, genus, species and common name of all fish recorded using towed and baited video within the Hopkins study site. Species 
authorities were identified according to Goman et al. (2008).  

      Baited-video  Towed-video  

Family Species Common Name Relative 
abundance 

Number of 
Occurrences 

Relative 
abundance 

Number of 
Occurrences 

Alopiidae Alopias sp. Thresher shark 2 2 0 0 
Aplodactylidae Aplodactylus arctidens (Richardson, 1839) Southern seacarp 2 2 10 10 
Aracanidae Aracana aurita (Shaw, 1798) Shaw's cowfish 0 0 2 2 
Arripidae Arripis sp. Australian salmon 3 1 0 0 
Berycidae Centroberyx gerrardi (Günther, 1854) Red snapper 4 4 0 0 
 Centroberyx lineatus (Cuvier, 1829) Swallowtail 5 3 0 0 
Callorhinchidae Callorhinchus milii (Bory de St Vincent, 1823) Elephant fish 2 2 0 0 
Carangidae Pseudocaranx dentex (Bloch and Schneider, 

1801) 
White trevally 632 21 0 0 

 Seriola lalandi (Valenciennes, 1833) Yellow-tail 
kingfish 

5 1 0 0 

 Trachurus declivis (Jenyns, 1841) Common jack 
mackerel 

3133 33 163 4 

 Trachurus novaezelandiae (Richardson, 1843) Yellow-tail scad 292 10 0 0 
 Trachurus sp.  26 1 0 0 
Centrolophidae Seriolella brama (Günther, 1860) Warehou 30 2 0 0 
Cheilodactylidae Cheilodactylus nigripes (Richardson, 1850) Magpie morwong 52 38 32 31 
 Cheilodactylus spectabilis (Hutton, 1872) Banded morwong 4 3 2 2 
 Dactylophora nigricans (Richardson, 1850) Dusky morwong 1 1 2 2 
 Nemadactylus douglasii (Hector, 1875) Blue morwong 7 6 0 0 
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 Nemadactylus valenciennesi (Whitley, 1937) Queen snapper 29 23 10 9 
Congridae Conger wilsoni (Bloch & Schneider, 1801) Conger eel 3 2 0 0 
Cyttidae Cyttus australis (Richardson, 1843) Silver dory 10 2 0 0 
Dasyatidae Dasyatis brevicaudata (Hutton, 1875) Smooth stingray 6 6 1 1 
Dinolestidae Dinolestes lewini (Griffith, 1834) Pike 389 23 12 4 
Diodontidae Diodon nicthemerus (Cuvier, 1818) Globefish 2 2 4 4 
Enoplosidae Enoplosus armatus (White, 1790) Old wife 6 4 4 4 
Gempylidae  Thyrsites atun (Euphrasen, 1791) Couta 32 14 1 1 
Gerreidae Parequula melbournensis (Castelnau, 1872) Silverbelly 42 29 22 15 
Heterodontidae Heterodontus portusjacksoni (Meyer, 1793) Port jackson shark 11 11 1 1 
Hexanchidae Notorynchus cepedianus (Péron, 1807) Broadnose 

sevengill shark 
1 1 0 0 

Kyphosidae Girella zebra (Richardson, 1846) Zebra fish 6 1 0 0 
Labridae Dotalabrus aurantiacus (Castelnau, 1872) Pretty polly 18 14 9 9 
 Notolabrus fuciola (Richardson, 1840) Purple wrasse 31 25 3 3 
 Notolabrus tetricus (Richardson, 1840) Blue-throat 

wrasse 
335 115 50 50 

 Pictilabrus laticlavius (Richardson, 1839) Senator wrasse 88 61 4 4 
 Pseudolabrus psittaculus (Richardson, 1840) Rosy wrasse 275 98 99 90 
Monacanthidae Acanthaluteres vittiger (Castelnau, 1873) Toothbrush 

leatherjacket 
13 10 1 1 

 Meuschenia flavolineata (Hutchins, 1977) Yellow stripe 
leatherjacket 

4 2 1 1 

 Meuschenia freycineti (Quoy & Gaimard, 1824) Six-spine 
leatherjacket 

62 52 5 5 

 Meuschenia galii (Waite, 1905) Blue-lined 
leatherjacket 

5 5 0 0 

 Meuschenia hippocrepis (Quoy & Gaimard, 
1824) 

Horse-shoe 
leatherjacket 

6 6 2 2 
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 Meuschenia scaber (Forster, 1801) Velvet 
leatherjacket 

358 106 38 37 

 Monacanthidae sp. Unidentifiable 
leatherjacket 

79 36 0 0 

 Nelusetta ayraudi (Quoy & Gaimard, 1824) Chinaman 
leatherjacket 

9 7 1 1 

 Scobinichthys granulatus (Shaw, 1790) Rough 
leatherjacket 

1 1 0 0 

Moridae Pseudophycis bachus (Bloch & Schneider, 
1801) 

Red rock-cod 1 1 0 0 

 Pseudophycis barbata (Günther, 1862) Bearded rock-cod 14 10 2 2 

Mullidae Upeneichthys vlamingii (Cuvier, 1829) Southern goatfish 68 37 34 31 
Myliobatidae Myliobatis australis (Macleay, 1881) Eagle ray 1 1 0 0 
Odacidae Odax cyanomelas (Richardson, 1850) Herring cale 63 39 32 28 
Parascyllidae Parascyllium variolatum (Duméril, 1853) Varied catshark 2 2 0 0 
Pempherididae Pempheris multiradiata (Klunzinger, 1879) Common bullseye 30 15 223 154 
Pentacerotidae Pentaceropsis recurvirostris (Richardson, 1845) Long-snouted 

boarfish 
0 0 1 1 

Pomacentridae Parma victoriae (Günther, 1863) Scalyfin 3 3 2 2 
Rajidae Raja whitleyi (Iredale, 1938) Whitley's skate 3 3 1 1 
Rhinobatidae Aptychotrema vincentiana (Haake, 1885) Western 

shovelnose ray 
3 3 0 0 

Rhinobatidae Trygonorrhina guaneria (Whitley, 1932)  Southern fiddler 
ray 

8 8 0 0 

Scorpaenidae Gymnapistes marmoratus (Cuvier, 1829) Soldierfish 4 4 0 0 
Scorpaenidae Neosebastes scorpaenoides(Guichenot, 1867) Common gurnard 

perch 
25 23 4 4 

Scorpididae Scorpis aequapinnis (Richardson, 1848) Sea sweep 20 3 12 9 
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 Tilodon sexfasciatus (Richardson, 1842) Moonlighter 7 5 1 1 
Serranidae Caesioperca spp. (a combination of C. rasor 

(Richarson, 1839) and C. lepidoptera (Forster, 
1801)) 

Perch 2919 115 2302 431 

Sillaginidae Sillaginodes punctata (Cuvier, 1829) King George 
whiting 

1 1 0 0 

Sparidae Pagrus auratus (Block and Schneider, 1801) Snapper 571 118 7 7 
Sphyraenidae Sphyraena novaehollandiae (Günther, 1860) Snook 7 3 1 1 
Syngnathidae Phyllopteryx taeniolatus (Lacepède, 1804) Weedy seadragon 0 0 1 1 
 Syngnathidae sp. Unidentifiable 

pipefish 
1 1 0 0 

Tetraodontidae Contusus sp. (most probably Tetractenos glaber 
(Freminville, 1813)) 

Unidentifiable 
toadfish 

1 1 0 0 

Tetraodontidae Omegophora armilla (Waite and McCulloch, 
1915) 

Ringed toadfish 1 1 4 4 

Trachichthyidae Trachichthys australis (Shaw and Nodder, 
1799) 

Roughy 0 0 1 1 

Triakidae Mustelus antarcticus (Günther, 1870) Gummy shark 6 6 0 0 
Urolophidae Urolophus cruciatus (Lacepède, 1804) Cross-back 

stingaree 
1 1 4 4 

 Urolophus paucimaculatus (Dixon, 1969) Sparsely-spotted 
stingaree 

0 0 1 1 

  Total 9781 1190 3112 976 

 
 


